docx, 72.57 KB
docx, 72.57 KB
This resource can be used to guide your students through the different techniques that may be used to solve some first order differential equations.

It begins with a reminder about the solution of 'variable separable' equations, with a couple of examples to work through.

By means of an example, the next section shows how the use of an integrating factor can help to solve 1st order linear diff.eqns. After the method is summarised there are a further 2 examples to work through with your class.

The worksheet then mentions the use of a substitution to simplify a complex diff.eqn into either a linear or variable separable one. There are no examples of such equations, just a table for students to practise determining if the resulting simplified equation is linear or variable separable.

The remainder of the resource introduces the important method of finding the general solution by adding the complementary function and the particular integral. It begins with the method for finding the complementary function from the auxiliary equation, and then goes on to explain the method for testing a suitable function f(x) for the particular integral (including the case where the function f(x) appears in the complementary function). There are several examples of this method to work through with your students, followed by an exercise with over 20 questions for students to complete themselves.

Answers to the exercise are included.

Reviews

Something went wrong, please try again later.

This resource hasn't been reviewed yet

To ensure quality for our reviews, only customers who have purchased this resource can review it

Report this resourceto let us know if it violates our terms and conditions.
Our customer service team will review your report and will be in touch.