Hero image

Engaging science Shop

Average Rating4.82
(based on 46 reviews)

I have been teaching for 10 years both as a Biology/Chemistry/Pychology teacher and as a Head of department. I have experience teaching in both international schools and state comprehensives.

167Uploads

27k+Views

15k+Downloads

I have been teaching for 10 years both as a Biology/Chemistry/Pychology teacher and as a Head of department. I have experience teaching in both international schools and state comprehensives.
IB Biology A1.1 Water (First exams in 2025)
AmenghisAmenghis

IB Biology A1.1 Water (First exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the A1.1 water in the new IB Biology specification for both HL and SL. This Powerpoint consists of 43 slides and contains the following: Starter task All information is clearly presented Student tasks with answers All key terms Notes for students Exam style questions with answers Student checklist (great for revision at the end of the unit) The following content is covered: A1.1: Water as a medium of life A1.2: Hydrogen bonds are a consequence of polar covalent bonds within a water molecule. A1.3: Cohesion of water molecules due to hydrogen bonds and the consequences for organisms A1.4: Adhesion of water molecules to polar or charged materials and the impact for organisms. A1.5: Solvent properties of water linked to its role as a medium for metabolism and transport in plants and animals A1.6: Physical properties of water and the consequences for animals in aquatic habitats. A1.7: Extraplanetary origins of water on Earth and reasons for it´s retention (HL ONLY) A1.8: Relationship between the search for extra-terrestrial life and the presence of water (HL ONLY)
IB Biology: B2.1 Membranes and membrane transport (first exams in 2025)
AmenghisAmenghis

IB Biology: B2.1 Membranes and membrane transport (first exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the B2.1 Membranes and membrane transport in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of 62 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: B2.1: Describe the formation of sheet-like bilayers in water by amphipathic lipids. B2.2: Explain the reasons behind the selective permeability of the lipid bilayer. B2.3: Discuss the movement of molecules by diffusion across the lipid bilayer. B2.4: Identify integral and peripheral proteins. B2.5: Discuss the role of aquaporins in transporting water. B2.6: Describe the structure and role of channel proteins. B2.7: Explain the importance of pump proteins in active transport. B2.8: Explain the role of facilitated diffusion and active transport in the selective permeability of membranes. B2.9Describe glycoproteins and glycolipids with respect to their structure and function. B2.10: Draw the fluid mosaic model of membrane structure. B2.11:Describe the role of lipids in membrane fluidity. B2:12: Discuss the role of cholesterol in membrane fluidity. B2.13: Differentiate between exocytosis and endocytosis. B2.14: Describe the role of gated channels. B2.15: Explain the mechanisms of direct active and indirect active transport. B2.16: State the role of cell-adhesion molecules. B2.17:  Identify the different types of cell junctions.
IB Biology D3.3: Homeostasis (first exams in 2025)
AmenghisAmenghis

IB Biology D3.3: Homeostasis (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D3.3: Homeostasis in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 50 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D3.3.1: Define the concept of homeostasis in relation to specific examples of variables. D3.3.2: Explain the role of negative feedback mechanisms in maintaining homeostasis. D3.3.3: Outline the role of pancreatic hormones in regulating blood glucose. D3.3.4: Outline the role of negative feedback mechanisms in regulating blood glucose. D3.3.5: Describe the physiological changes that form the basis of type 1 and type 2 diabetes. D3.3.6: Describe the roles of thermoreceptors and hypothalamus in regulating body temperature. D3.3.7: Outline the mechanisms in regulating human body temperature. D3.3.8: Define osmoregulation and excretion. D3.3.9: Explain the roles of the glomerulus, Bowman’s capsule and proximal convoluted tubule in excretion. D3.3.10: Outline the functions of the loop of Henle and collecting ducts. D3.3.11: Explain the effect of ADH on the permeability of the kidney tubules. D3.3.12: Describe examples of changes in blood supply in response to changes in activity.
IB Biology D4.2: Stability and change (first exams in 2025)
AmenghisAmenghis

IB Biology D4.2: Stability and change (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D4.2: Stability and change in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 60 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D4.2.1: Define ‘ecosystem stability’, including some examples of stable ecosystems. D4.2.2: Outline the factors that affect stability and explain tipping points, using deforestation of the Amazon rainforest as an example. D4.2.3: Evaluate the use of models to investigate the effect of variables on ecosystem stability. D4.2.4: Explain the role of keystone species in the stability of ecosystems. D4.2.5: Evaluate the sustainability of resource harvesting from natural ecosystems. D4.2.6: Outline the factors affecting the sustainability of agriculture. D4.2.7: Explain eutrophication and its effects on ecosystems. D4.2.8: Outline biomagnification of pollutants. D4.2.9: Describe the effects of microplastic and macroplastic pollution of the oceans. D4.2.10: Describe the strategies for restoration of natural processes in ecosystems by rewilding. D4.2.11: Define ecological succession and outline the causes. D4.2.12: Describe the changes during primary succession. D4.2.13: Describe cyclical succession. D4.2.14: Distinguish between climax communities and arrested succession.
IB Biology D4.3: Climate change (first exams in 2025)
AmenghisAmenghis

IB Biology D4.3: Climate change (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D4.3: Climate change in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 50 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D4.3.1: Define anthropogenic climate change and describe its causes. D4.3.2: Outline the positive feedback cycles in global warming, with examples. D4.3.3: Describe the transition from net carbon accumulation to net loss in boreal forests as an example of a tipping point. D4.3.4: Explain the melting of landfast ice and sea ice as examples of polar habitat change. D4.3.5: Explain the effects of climate change on ocean currents and nutrient distribution. D4.3.6: Understand the effect of climate change on range shifts of temperate species and coral reefs. D4.3.7: Evaluate afforestation, forest regeneration and restoration of peat-forming wetlands as approaches to carbon sequestration. D4.3.8: Define phenology and outline the disruption of phenological events caused by climate change D4.3.9: Explain how climate change can lead to increases in the number of insect life cycles. D4.3.10: Discuss the concept of evolution as a consequence of climate change.
IB Biology A2.1: Origins of cells (First Exams 2025)
AmenghisAmenghis

IB Biology A2.1: Origins of cells (First Exams 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the A2.1 Origins of cells in the new IB Biology specification for HL only. This Powerpoint consists of 40 slides and contains the followings: All the information (both SL and HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student questions with answers Clearly identified HL and SL content Student checklist The following content is included: • A2.1.1: Conditions on early Earth and the formation of prebiotic Carbon. •A2.1.2: Cells as the smallest units of self sustaining life •A2.1.3: Challenge explaining the spontaneous origin of cells. •A2.1.4: Evidence for the origin of carbon compounds •A2.1.5: Spontaneous formation of vesicles by the coalescences of fatty acids to form spherical bilayers •A2.1.6: RNA as a presumed first genetic material •A2.1.7: Evidence for a last common ancestor •A2.1.8: Approaches used to estimate the dates of first living cells under the last universal common ancestor. •A2.1.9: Evidence for the evolution of the last common ancestor in the vicinity of hydrothermal vents.
IB Biology: B1.2 Proteins (first exams in 2025)
AmenghisAmenghis

IB Biology: B1.2 Proteins (first exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the B1.2 Proteins in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of 55 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student research tasks Clearly identified HL and SL content The following content is included: B1.2.1: Generalised structure of an amino acid. B1.2.2: Condensation reactions produce dipeptides and longer polypeptides. B1.2.3: Dietary requirements of amino acids B1.2.4: Infinite possible variety of polypeptide chains B1.2.5: Effects of pH and temperature on proteins structure. B1.2.6: chemical diversity in the R-groups of amino acids is the basis for the immense diversity in protein structures (HL only) B1.2.7: Impact of the primary structure on the conformation of proteins (HL only) B1.2.8: Pleating and coiling of secondary structure of proteins (HL only) B1.2.9: Dependence of tertiary structure on hydrogen bonds, ionic bonds, disulphide covalent bonds and hydrophobic interactions (HL only) B1.2.10: Effects of polar and non-polar amino acids on the tertiary structure (HL only) B1.2.11: Quaternary structure of conjugated and non-conjugated proteins (HL only B1.2.12: Relationships of form and function for globular and fibrous proteins (HL only)
IB Biology: B1.1 Carbohydrates and Lipids (first exams in 2025)
AmenghisAmenghis

IB Biology: B1.1 Carbohydrates and Lipids (first exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach Theme/Unit B1.1 Carbohydrates and Lipids in the new IB Biology specification. This Powerpoint consists of 99 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student research tasks Clearly identified HL and SL content The following content is included: B1.1.1: Chemical properties of Carbon atoms allowing for the formation of diverse compounds upon which life is based. B1.1.2: Production of macromolecules by condensation reactions which link monomers to form polymers. B1.1.3: Digestion of polymers into monomers via hydrolysis reactions. B1.1.4: Form and function of monosaccharides. B1.1.5: Polysaccharides as a energy storage compound. B1.1.6: Structure of cellulose related to its function in plants. B1.1.7: Role of glycoproteins in cell recognition B1.1.8: Hydrophobic properties of water. B1.1.9: Formation of triglycerides and phospholipids by condensation reactions. B1.1.10: difference between saturated, monounsaturated and polyunsaturated fatty acids. B1.1.11: Triglycerides in adipose tissue as a storage of energy and insulation. B1.1.12: Formation of the phospholipid bilayer due to the hydrophobic and hydrophilic regions of phospholipids B1.1.13: The ability of steroid hormones to pass through phospholipid bilayers.
IB Biology D2.3: Water Potential  (first exams in 2025)
AmenghisAmenghis

IB Biology D2.3: Water Potential (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D2.3: Water Potential in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 45 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D2.2.1: Explain how water is able to dissolve many substances D2.2.2: Explain the movement of water from less concentrated to more concentrated solutions. D2.2.3: Predict the net movement of water based on the environment of a cell. D2.2.4: Outline the changes that occur to plant tissues bathed in hypotonic and hypertonic solutions. D2.2.5: Explain the effects of water movement into and out of cells on cells that lack a cell wall. D2.2.6: Explain the effects of water movement into and out of cells on cells that have a cell wall. D2.2.7: Outline medical applications of isotonic solutions. D2.2.8: Define the term water potential. D2.2.9: Explain the direction that water moves in terms of water potential. D2.2.10: Explain how solute potential and pressure potential affect the water potential within cells. D2.2.11: Explain the changes that occur when a plant tissue is bathed in either a hypotonic or hypertonic solution in terms of solute and pressure potentials.
IB Biology D2.2: Gene expression HL only (first exams in 2025)
AmenghisAmenghis

IB Biology D2.2: Gene expression HL only (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D2.2: Gene expression (HL only) in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 40 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D2.2.1: Explain the term gene expression. D2.2.1: Outline how transcription can be regulated by proteins that bind to DNA. D2.2.1: Outline how translation can be regulated through the degradation of mRNA. D2.2.1: Explain the term epigenesis. D2.2.1: Describe the differences between the genome, transcriptome and proteome of individual cells. D2.2.1: Outline how methylation can affect gene expression. D2.2.1: Identify why some epigenetic changes are heritable. D2.2.1: Describe examples of how the environment can affect gene expression. D2.2.1: Outline consequences of removing epigenetic tags from human gametes. D2.2.1: Discuss the use of monozygotic twins to study gene expression. D2.2.1: Describe examples of external factors that can impact gene expression.
IB Biology A1.2 Nucleic acid (First exams in 2025)
AmenghisAmenghis

IB Biology A1.2 Nucleic acid (First exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the A1.2 nucleic acids in the new IB Biology specification for both HL and SL. This Powerpoint consists of 63 slides and contains the followings: All the information (both SL and HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student questions with answers Clearly identified HL and SL content Student checklist The following content is included: A1.2.1: DNA is the universal genetic material of all living organisms. A1.2.1: The structure of a nucleotide A1.2.3: Sugar-phosphate backbone/bonding of DNA and RNA A1.2.4: Bases in DNA and RNA A1.2.5: RNA as a polymer of nucleotides formed by condensation reactions. A1.2.6: Structure of the DNA double helix A1.2.7: Differences between DNA and RNA A1.2.8: Importance of complementary base pairing A1.2.9: Limitless capacity of DNA to store genetic information A1.2.10: Conservation of the genetic code (evidence for common ancestry) A1.2.11: Directionality of DNA and RNA (HL only) A1.2.12: Purine to Pyrimidine base pairing (HL only) A1.2.13: Structure of the nucleosome (HL only) A1.2.14: Hershey-Chase experiment: Evidence of DNA as a genetic material (HL only) A1.2.15: Chargaff´s rule: relative amounts of purine´s and pyrimidine´s (HL only)
IB Biology A2.2: Cell strcture (First Exams 2025)
AmenghisAmenghis

IB Biology A2.2: Cell strcture (First Exams 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the A2.2 Cell Structure in the new IB Biology specification for both HL and SL. This Powerpoint consists of 114 slides and contains the followings: All the information (both SL and HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student questions with answers Clearly identified HL and SL content Student checklist The following content is included: A2.2.1: cells as the basic structural unit of life. A2.2.2: Microscopy skills A2.2.3: Development of microscopes A2.2.4: Structures which are common to cells in all living things A2.2.5: Structure of prokaryotic cells A2.2.6: Eukaryotic cell structure A2.2.7: Processes of life in unicellular organisms A2.2.8: Differences in eukaryotic cell structure between animal, fungi and plants A2.2.9: Atypical structures in eukaryotes A2.2.10: Cell types and structures viewed in light and electron microscopes A2.2.11: Drawing and annotating based on electron micrographs. A2.2.12: Origin of eukaryotic cells by endosymbiosis A2.2.13: Cell differentiation as the process for developing specialised tissues in organisms Note: Please review and provide feedback
IB Biology D1.3: Mutations and gene editing (first exams in 2025)
AmenghisAmenghis

IB Biology D1.3: Mutations and gene editing (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D1.3: Mutations and gene editing in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 50 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D1.3.1: Explain that gene mutations are structural changes to genes at the molecular level. D1.3.2: Outline the consequences of base substitutions. D1.3.3: Outline the consequences of insertions and deletions. D1.3.4: Recall that gene mutations can be caused by mutagens and by errors in DNA replication or repair. D1.3.5: Explain that mutations can occur anywhere in the base sequences of a genome. D1.3.6: Explain the effects of gene mutations occurring in germ cells and somatic cells. D1.3.7: Recognise that gene mutation is the original source of all genetic variation. D1.3.8: Outline that gene knockout is a technique for investigating the function of a gene by changing it to make it inoperative. D1.3.9: Explain the use of the CRISPR sequences and the enzyme Cas9 in gene editing. D1.3.10: Describe the hypotheses for conserved or highly conserved sequences in genes
IB Biology D1.2: Protein synthesis (first exams in 2025)
AmenghisAmenghis

IB Biology D1.2: Protein synthesis (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D1.2 Protein synthesis in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 60 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D1.2.1:Describe transcription as the synthesis of RNA using DNA as a template. D1.2.2: Describe the use of hydrogen bonding and complementary base pairing in transcription and the replacement of thymine with uracil in RNA. D1.2.3: Describe how DNA is used as a template for transcription, remains stable and unchanged. D1.2.4: Explain the use of transcription and its control of gene expression. D1.2.5: Describe translation as the use of the mRNA produced in transcription to synthesise polypeptides. D1.2.6: Describe the roles of mRNA, ribosomes and tRNA in translation. D1.2.7: Describe complementary base pairing between the codons on mRNA and the anticodons on tRNA. D1.2.8: Explain the main features of degeneracy and universality of the genetic code. D1.2.9: Deduce the sequence of amino acids from an mRNA strand using a table of mRNA codons. D1.2.10: Describe the elongation process of translation. D1.2.11: Describe how a point mutation can affect the polypeptide produced. D1.2.12: Describe the directionality of transcription and translation as 5′ to 3′. D1.2.13: Describe the role of the promoter in transcription and how the binding of transcription factors to the promoter initiate transcription. D1.2.14: Explain the roles of non-coding regions of DNA. D1.2.15: Explain post-transcriptional modification of mRNA in eukaryotes. D1.2.16: Describe how alternative splicing can produce variants of a protein. D1.2.17: Describe the initiation stage of translation. D1.2.18: Describe the modification of polypeptides to their functional state using pre-proinsulin to insulin as an example. D1.2.19: Describe the recycling of amino acids by proteasomes
IB Biology D1.1: DNA replication (first exams in 2025)
AmenghisAmenghis

IB Biology D1.1: DNA replication (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D1.1 DNA replication in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 80 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D1.1.1: Describe DNA replication as the process by which exact copies of DNA are created for use in reproduction, growth and tissue replacement in multicellular organisms. D1.1.2: Explain the semi-conservative nature of DNA replication and how it allows for a high degree of accuracy when copying base sequences. D1.1.3: Describe the roles of helicase and DNA polymerase in DNA replication. D1.1.4: Describe the use of polymerase chain reaction and gel electrophoresis for amplifying and separating DNA. D1.1.5: Describe the applications for PCR and gel electrophoresis. D1.1.6: Describe the directionality of DNA polymerases based on the difference between the 5ʹ and 3ʹ terminals of strands of nucleotides. D1.1.7: Describe replication on both the leading and lagging strands and how these differ. D1.1.8: Describe the functions of DNA primase, DNA polymerase I, DNA polymerase III and DNA ligase in replication of prokaryotic DNA. D1.1.9: Explain DNA polymerase III’s role as a proofreader of replicated DNA
IB Biology C1.3: Photosynthesis (first exams in 2025)
AmenghisAmenghis

IB Biology C1.3: Photosynthesis (first exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit C1.3 Photosynthesis in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of over 50 slides and contains the followings: All the information the IB have included in the new spec. Exam tips Clear diagrams Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: C1.3.1: Explain how the energy transformation of light energy to chemical energy is needed for most life processes in ecosystems. C1.3.2: Describe photosynthesis as the conversion of carbon dioxide to glucose. C1.3.3: Describe the production of oxygen as a by-product of photosynthesis. C1.3.4: Describe the process of chromatography for separating pigments and the use of Rf values to identify pigments. C1.3.5: Describe and explain the absorption of different wavelengths of light by photosynthetic pigments. C1.3.6: Compare absorption and action spectra C1.3.7: Determine through investigation the effects of limiting factors on the rate of photosynthesis. C1.3.8: Describe carbon dioxide enrichment experiments as a means of predicting future rates of photosynthesis and plant growth. C1.3.9: Describe photosystems as arrays of pigments within membranes of photosynthetic organisms that generate and emit excited electrons. C1.3.10: Explain the advantage that an array of pigments in a photosystem has over individual pigment molecules. C1.3.11: Describe the photolysis of water in terms of a means of replacing lost electrons in photosystem II and the production of oxygen as a waste product. C1.3.12: Describe the production of ATP by chemiosmosis through both cyclic and non-cyclic photophosphorylation. C1.3.13: Describe the reduction of NADP by photosystem I. C1.3.14: Explain the importance of the thylakoids as the site of photolysis, chemiosmosis and reduction of NADP. C1.3.15: Describe  carbon fixation by Rubisco and the significance  of Rubisco as an enzyme. C1.3.16: Describe the process of generating triose phosphate using ATP and reduced NADP. C1.3.17: Describe the regeneration of RuBP and the completion of the Calvin Cycle using ATP. C1.3.18: Describe the production of a variety of carbon compounds from photosynthesis. C1.3.19: Explain the link between the light-dependent and light-independent reactions and how the light-independent reactions cannot continue in the absence of light.
IB Biology C4.1: Populations and Communities (first exams in 2025)
AmenghisAmenghis

IB Biology C4.1: Populations and Communities (first exams in 2025)

(0)
This PowerPoint contains everything you need to teach the Theme/Unit C4.1 populations and communities in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of over 80 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Exam style questions Summary The following content is included: C4.1.1: Define the term population. C4.1.2: Outline reasons for estimating population samples. C4.1.3: Analyse and explain the importance of using random sampling techniques in ecological studies. C4.1.4: Outline how quadrat sampling is used to estimate the population size for sessile organisms. C4.1.5: Outline how the capture-mark-release-recapture method and the Lincoln index are implemented to estimate the population size of a motile species.  C4.1.6: Define carrying capacity and explain why population growth slows down as the carrying capacity is reached. C4.1.7: Distinguish between density-dependent and density-independent limiting factors. C4.1.8: Compare and contrast exponential and sigmoidal population growth models. C4.1.8: Evaluate the use of models as representations of natural phenomena. C4.1.9: Describe the impact of intraspecific competition and cooperation on the survival and reproduction of a population. C4.1.10: Define communities as diverse collections of populations that interact and contribute to the functioning of ecosystems. C4.1.11: Distinguish between multiple interspecific interactions. C4.1.12: Discuss the ecological significance of interactions between species. C4.1.13: Outline examples of herbivory, predation, competition, parasitism, pathogenicity and mutualism. C4.1.14: Evaluate the impact of invasive species on endemic species. C4.1.15: Outline the role of human activities in the introduction and spread of invasive species. C4.1.16: Assess the presence of interspecific competition using different testing methods. C4.1.17: Apply the chi-squared test to determine an association between species. C4.1.18: Interpret the results of a chi-squared test to generate accurate conclusions. C4.1.19: Evaluate the validity of the chi-squared test as a statistical method for analysing associations between categorical variables. C4.1.20:Evaluate the influence of predator–prey interactions on population dynamics using real case studies. C4.1.21: Discuss the implications of top-down and bottom-up control in population regulation within communities. C4.1.22: Compare and contrast allelopathy and antibiotic secretion mechanisms of competitive advantage in different organisms
IB Biology C4.2: Transfer of energy and matter (first exams in 2025)
AmenghisAmenghis

IB Biology C4.2: Transfer of energy and matter (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit C4.2 Transfer of energy and matter in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of over 80 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Exam style questions Summary The following content is included: C4.2.1: Explain the concept of ecosystems as open systems. C4.2.2: Describe the role of sunlight in ecosystems. C4.2.3: Outline the flow of energy through food chains and food webs. C4.2.4: Construct food chains and food webs to represent feeding relationships in a community. C4.2.5: Describe the role of decomposers in nutrient cycling. C4.2.6: Distinguish between autotrophic and heterotrophic modes of nutrition. C4.2.7: Classify organisms into trophic levels based on their position in a food chain or food web. C4.2.8: Construct an energy pyramid based on ecological data. C4.2.9: Explain the factors that contribute to energy losses in food chains. C4.2.10: Outline the causes and consequences of heat dissipation in food chains. C4.2.11: Describe the factor that restricts the number of trophic levels in a food chain. C4.2.12: Compare and contrast primary and secondary productivity. C4.2.13: Explain the factors that affect primary productivity in an ecosystem C4.2.14: Construct an accurate diagram of the carbon cycle. C4.2.15: Explain the factors influencing an ecosystem’s capacity to function as a carbon sink or a source. C4.2.16: Discuss the impact of deforestation on the carbon cycle.  C4.2.17: Describe how combustion of fossil fuels and biomass affects the carbon cycle. C4.2.18: Analyse and explain the short-term and long-term trends shown in the Keeling Curve. C4.2.19: Explain the significance of photosynthesis and aerobic respiration in sustaining life on Earth. C4.2.20: Explain the importance of cycles of matter in the functioning of ecosystems.
IB Biology C1.1:  Enzymes (first exams in 2025)
AmenghisAmenghis

IB Biology C1.1: Enzymes (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit C1.1 Enzymes in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of over 60 slides and contains the followings: All the information the IB have included in the new spec. Exam tips Clear diagrams Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: C1.1: Define metabolism. C1.2: Distinguish between anabolism and catabolism and give examples. C1.3: Describe the structure and role of enzymes. C1.4: Describe the mechanism of enzyme catalysis. C1.5: Describe the role of molecular motion and substrate–active site collisions in enzyme catalysis. C1.6: Explain the relationship between the structure of the active site, enzyme–substrate specificity and denaturation. C1.7: Explain the effect of enzymes on the activation energy. C1.8: Explain the effect of temperature, pH, substrate concentration on the enzyme activity. C1.9: Determine reaction rate through experimentation and secondary data. C1.10:Distinguish intracellular and extracellular enzyme-catalysed reactions. C1.11: Distinguish cyclical and linear pathways in metabolism. C1.12: Explain the generation of heat by metabolic reactions. C1.13: Distinguish competitive and non-competitive inhibition and give examples. C1.14: Explain the end-product inhibition and give examples. C1.15: Explain mechanism-based inhibition.
IB Biology C2.1:  Chemical signalling HL only (first exams in 2025)
AmenghisAmenghis

IB Biology C2.1: Chemical signalling HL only (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit C2.1 Chemical signalling in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of over 70 slides and contains the followings: All the information the IB have included in the new spec. Exam tips Clear diagrams Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: C2.1.1: Define the term ligand. C2.1.2: Outline the stages of signal transduction. C2.1.3: Explain the mechanism of quorum sensing in bacteria and discuss its role in bacterial behaviour. C2.1.4: Understand bioluminescence and its importance and applications. C2.1.5: Identify the categories of signalling chemicals in animals ­ hormones, neurotransmitters, cytokines and calcium ions. C2.1.6: Differentiate between different types of signals used by multicellular organisms. C2.1.7: Describe the difference in structure and function of hormones and neurotransmitters. C2.1.8: Demonstrate an understanding of mechanisms that signalling molecules use to produce localised as well as distant effects. C2.1.9: Analyse the role of signalling molecules in the transmission of signals from one part of the body to another. C2.1.10: Compare and contrast transmembrane receptors and intracellular receptors. C2.1.11: Describe the different signalling pathways activated by transmembrane receptors and intracellular receptors. C2.1.12: Explain the mechanisms of initiation of signal transduction pathways. C2.1.13: Compare and contrast different types of transmembrane receptors and their mechanisms of action, including neurotransmitter receptors and G protein-coupled receptors. C2.1.14:Analyse the role of transmembrane receptors in changing membrane potential and activating intracellular signalling pathways. C2.1.15: Explain that positive feedback amplifies the response. C2.1.16: Explain that negative feedback dampens or inhibits the signalling response. C2.1.17: Explain that a balance of both positive and negative feedback is necessary for proper cellular response