Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Isolation and speciation (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Isolation and speciation (Pearson Edexcel A-level Biology A)

(1)
This fully-resourced lesson explores how reproductive isolation can potentially lead to the formation of a new species by speciation . The engaging PowerPoint and accompanying resources have been designed to cover point 5.19 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should understand how isolation reduces gene flow between populations which can lead to allopatric or sympatric speciation. The lesson begins by using the example of a hinny, which is the hybrid offspring of a horse and a donkey, to challenge students to recall the biological classification of a species. Moving forwards, students are introduced to the idea of speciation and the key components of this process, such as isolation and selection pressures, are covered and discussed in detail. Understanding and prior knowledge checks are included throughout the lesson to allow the students to not only assess their progress against the current topic but also to make links to earlier topics in the specification. Time is taken to look at the details of allopatric speciation and how the different mutations that arise in the isolated populations and genetic drift will lead to genetic changes. The example of allopatric speciation in wrasse fish because of the isthmus of Panama is used to allow the students to visualise this process. The final part of the lesson considers sympatric speciation and again a wide variety of tasks are used to enable a deep understanding to be developed.
Protein transport within cells (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Protein transport within cells (Edexcel Int. A-level Biology)

(1)
This lesson describes the role of the rER and the Golgi apparatus in the formation of proteins, the transport within cells and their secretion. The PowerPoint and accompanying resources have been designed to cover point 3.4 of the Edexcel International A-level Biology specification and also includes key details about the role of the cytoskeleton in the transport of the vesicles that contain the protein between the organelles and the membrane. The lesson begins with the introduction of the cytoskeleton and explains how this network of protein structures transverses across the cytoplasm and is fundamental to the transport of molecules between organelles. The lesson has been planned to closely tie in with the previous lesson on the ultrastructure of eukaryotic cells and students are challenged on their knowledge of the function of the organelles involved in protein formation (and modification) through a series of exam-style questions. By comparing their answers against the mark scheme embedded in the PowerPoint, students will be able to assess their understanding of the following: Transcription in the nucleus to form an mRNA strand and the exit of this nucleic acid through the nuclear pore Translation at the ribosomes on the surface of the rER to assemble the protein Transport of the vesicles containing the protein to the Golgi apparatus Modification of the protein at the Golgi apparatus Formation of the Golgi vesicle and its transport to the cell membrane for exocytosis Time is taken to discuss the finer details of this process such as the arrival of the vesicle at the cis face and the transport away from the trans face and the requirement of ATP for the transport of the vesicles along the microtubule track and exocytosis. The remainder of the lesson uses a series of exam-style questions about digestive enzymes (extracellular proteins) to challenge the students on their recall of the structure of starch and proteins
Immobilised enzymes
GJHeducationGJHeducation

Immobilised enzymes

(1)
An informative and engaging lesson (46 slides) that looks at the topic of immobilised enzymes and focusses on ensuring that students understand this topic around three main ideas. By the end of the lesson, students will be able to explain why immobilised enzymes are used, describe the different methods by which they are produced and describe some of their uses in biotechnology. Time is taken throughout the lesson to make sure that students understand the disadvantages associated with this process and that they are able to explain the specific limitations of each method. This lesson has been designed for students studying A-level Biology
Topic B1: Cell Biology (AQA Trilogy GCSE Combined Science)
GJHeducationGJHeducation

Topic B1: Cell Biology (AQA Trilogy GCSE Combined Science)

10 Resources
This bundle of 10 lessons covers the majority of the content in Topic B1 (Cell Biology) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include: Cells Microscopy Cell differentiation and specialisation Chromosomes and mitosis Stem cells Diffusion Osmosis Active transport Exchange surfaces Exchanging substances All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B3: Organism-level systems (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B3: Organism-level systems (OCR Gateway A GCSE Biology)

13 Resources
This bundle of 15 lessons covers the majority of the content in Topic B3 (Organism level systems) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: The nervous system The eye Hormones and the endocrine system Adrenaline Negative feedback loops Thyroid gland and thyroxine The menstrual cycle Contraception Using hormones to treat infertility Plant hormones Homeostasis Controlling body temperature Controlling blood glucose Diabetes Inside the kidney All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Types of selection (AQA A-level Biology)
GJHeducationGJHeducation

Types of selection (AQA A-level Biology)

(1)
This engaging and fully-resourced lesson looks at the effects of stabilising, directional and disruptive selection as the three main types of selection. The PowerPoint and accompanying resources have been designed to cover the 3rd part of point 7.3 of the AQA A-level Biology specification which states that students should be able to identify each type of selection by its effect on different phenotypes. The lesson begins with an introduction to the mark, release, recapture method to calculate numbers of rabbits with different coloured fur in a particular habitat. This method is covered later in topic 7 so this section of the lesson is designed purely to generate changes in numbers of the organisms. Sketch graphs are then constructed to show the changes in the population size in this example. A quick quiz competition is used to engage the students whilst introducing the names of the three main types of selection before a class discussion point encourages the students to recognise which specific type of selection is represented by the rabbits. Key terminology including intermediate and extreme phenotypes and selection pressure are used to emphasise their importance during explanations. A change in the environment of the habitat and a change in the numbers of the rabbits introduces directional selection before students will be given time to discuss and to predict the shape of the sketch graph for disruptive selection. Students are challenged to apply their knowledge in the final task of the lesson by choosing the correct type of selection when presented with details of a population and answer related questions.
Regulation of BLOOD GLUCOSE CONCENTRATION (OCR A-level Biology A)
GJHeducationGJHeducation

Regulation of BLOOD GLUCOSE CONCENTRATION (OCR A-level Biology A)

(1)
This highly detailed, fully-resourced lesson has been designed to cover the content of specification point 5.1.4 (d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the regulation of blood glucose concentration. There is focus on the negative feedback mechanisms that release insulin or glucagon and the role of the liver. It challenges the students recall of the control of insulin release from the beta cells which was taught in an earlier lesson. A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis. This lesson has been written for students studying on the OCR A-level Biology A course and ties in with the lesson on the differences between type I and II diabetes mellitus as well as the human endocrine system
Topics 17 & 18: Selection, evolution, biodiversity & classification (CIE A-level Biology)
GJHeducationGJHeducation

Topics 17 & 18: Selection, evolution, biodiversity & classification (CIE A-level Biology)

16 Resources
The topics of selection, evolution, biodiversity, classification and conservation are key concepts in Biology, that are regularly assessed in the exams, but are not always that well understood by the students. With this at the forefront of the lesson design, these 16 lesson PowerPoints and their accompanying resources have been intricately planned to cover the detailed content of topics 17 & 18 of the CIE A-level Biology specification through the use of a wide range of tasks to engage and motivate the students. There are plenty of opportunities for the students to assess their current understanding through the completion of exam-style questions and also to check on their prior knowledge by making links to earlier topics. The following specification points are covered by these lessons: Topic 17.1: Variation The differences between continuous and discontinuous variation Using the t-test to compare the variation of two different populations The importance of genetic variation in selection Topic 17.2: Natural and artificial selection Natural selection Explain how environmental factors can act as stabilising, disruptive and directional forces of natural selection Explain how the founder effect and genetic drift may affect allele frequencies in populations Use the Hardy-Weinberg principle Topic 17.3: Evolution The molecular evidence that reveals similarities between closely related organisms Explain how speciation may occur Topic 18.1: Biodiversity Define the terms species, ecosystem and niche Explain that biodiversity is considered at three levels Explain the importance of random sampling in determining the biodiversity of an area Use suitable methods to assess the distribution and abundance of organisms in a local area Use the Spearman’s rank correlation to analyse relationships between data Use Simpson’s index of diversity Topic 18.2: Classification The classification of species into taxonomic hierarchy The characteristic features of the three domains The characteristic features of the kingdoms Explain why viruses are not included in the three domain classification Topic 18.3: Conservation The reasons for the need to maintain biodiversity Methods of protecting endangered species The roles of organisations like the WWF and CITES in local and global conservation If you would like to sample the quality of the lessons that are included in this bundle then download the following as these have been shared for free: Continuous and discontinuous variation Molecular evidence & evolution Spearman’s rank correlation WWF, CITES and conservation It is estimated that it will take up to 2 months of A-level Biology teaching time to cover the detail included in these lessons
Topics 4.4 - 4.7 (AQA A-level Biology)
GJHeducationGJHeducation

Topics 4.4 - 4.7 (AQA A-level Biology)

9 Resources
These 9 lessons are highly detailed and are filled with a wide range of tasks that will engage the students whilst covering the following specification points in topics 4.4, 4.5, 4.6 and 4.7 of the AQA A-level Biology specification: 4.4 Genetic diversity as the number of different alleles of genes in a population and a factor enabling natural selection to occur The principles of natural selection in the evolution of populations Directional and stabilising selection Natural selection results in anatomical, physiological or behavioural adaptations 4.5 Two organisms belong to the same species if they are able to produce fertile offspring The taxonomic hierarchy comprising domain, kingdom, phylum, class, order, family, genus and species The use of the binomial name to identify species 4.6 Biodiversity can relate to a range of habitats Species richness Calculating an index of diversity The balance between conservation and farming 4.7 Investigating genetic diversity with, or between species, by comparing observable characteristics or nucleic acids and the structure of proteins Calculating and interpreting the mean and standard deviation If you download the natural selection and standard deviation lessons which have been shared for free then you will be able to see the quality of lessons included in this bundle
ULTRAFILTRATION (AQA A-level Biology)
GJHeducationGJHeducation

ULTRAFILTRATION (AQA A-level Biology)

(2)
This detailed lesson has been written to cover the part of specification point 6.4.3 of the AQA A-level Biology specification which states that students should be able to describe how the structure of the nephron allows for the formation of glomerular filtrate. The aim of the design was to give the students the opportunity to discover the function of ultrafiltration and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem This lesson has been written for students studying on the AQA A-level course and ties in nicely with the other kidney lessons on the structure of the nephron, selective reabsorption and osmoregulation
Monomers and polymers (AQA A-level Biology)
GJHeducationGJHeducation

Monomers and polymers (AQA A-level Biology)

(2)
This lesson introduces monomers, polymers, condensation and hydrolysis reactions and chemical bonds to prepare students for the rest of topic 1 (biological molecules). The PowerPoint and accompanying worksheet cover point 1.1 of the AQA A-level Biology course, and as this is likely to be the very first lesson that the students encounter, the range of engaging tasks have been specifically designed to increase the likelihood of the key points and fundamentals being retained. Monomers were previously met at GCSE and so the beginning of the lesson focuses on the recall of the meaning of this key term before the first in a series of quiz rounds is used to introduce nucleotides, amino acids and monosaccharides as a few of the examples that will be met in this topic. Dipeptides and disaccharides are introduced as structures containing 2 amino acids or sugars respectively and this is used to initiate a discussion about how monomers need to be linked together even more times to make the larger chains known as polymers. At this point in the lesson, the students are given the definition of a condensation reaction and then challenged to identify where the molecule of water is eliminated from when two molecules of glucose join. A series of important prefixes and suffixes are then provided and students use these to predict the name of the reaction which has the opposite effect to a condensation reaction - a hydrolysis reaction. Links to upcoming lessons are made throughout the PowerPoint to encourage students to begin to recognise the importance of making connections between topics.
AQA A-level Biology Topic 3 REVISION (Organisms exchange substances with their environment)
GJHeducationGJHeducation

AQA A-level Biology Topic 3 REVISION (Organisms exchange substances with their environment)

(1)
This is a fully-resourced REVISION lesson that uses a combination of exam questions, understanding checks, differentiated tasks and quiz competitions to enable students to assess their understanding of the content found within Topic 3.3 (Organisms exchange substances with their environment) of the AQA A-level Biology specification. The sub-topics and specification points that are tested within the lesson include: Surface area to volume ratio Gas exchange Digestion and absorption Mass transport in animals Mass transport in plants Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
Topic 14.1: Homeostasis in mammals (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 14.1: Homeostasis in mammals (CIE International A-level Biology)

7 Resources
This bundle contains 7 fully-resourced and detailed lessons that have been designed to cover the content of topic 14.1 of the CIE International A-level Biology specification which concerns homeostasis in mammals. The wide range of activities included in each lesson will engage the students whilst the detailed content is covered and the understanding and previous knowledge checks allow them to assess their progress on the current topic as well as challenging them to make links to other related topics. Most of the tasks are differentiated to allow differing abilities to access the work and be challenged. The following sub-topics are covered in this bundle of lessons: The importance of homeostasis The role of negative feedback mechanisms in the homeostatic control systems The role of the nervous and endocrine systems in homeostasis Deamination of amino acids and the urea cycle The gross structure of the kidney and the detailed structure of the nephron The process of ultrafiltration and selective reabsorption in the formation of urine The roles of the hypothalamus, posterior pituitary gland, ADH and the collecting ducts in osmoregulation The regulation of blood glucose concentration by the release of insulin and glucagon The role of cyclic AMP as a secondary messenger The stages of cell signalling If you want to see the quality of the lessons before purchasing then the lesson on osmoregulation is a free resource to download
DNA and GENES (AQA A-level Biology)
GJHeducationGJHeducation

DNA and GENES (AQA A-level Biology)

(1)
This fully-resourced lesson looks at the structure of genes and explores their role as a base sequence on DNA that codes for the amino acid sequence of a polypeptide. Both the PowerPoint and accompanying resource have been designed to cover the second part of point 4.1 of the AQA A-level Biology specification and has been written to specifically tie in with the previous lesson on DNA in prokaryotes and eukaryotes. The lesson begins with a prior knowledge check as the students have to recognise the key term chromosome from a description involving DNA and histones. This allows genes, as sections of a chromosome, to be introduced and the first of a number of quiz rounds is then used to get the students to meet the term locus so that they can understand how each gene has a specific location on a chromosome. Whenever possible, opportunities are taken to make links to the other parts of the AQA specification and this is utilised here as students are reminded that alternative versions of a gene (alleles) can be found at the locus. Moving forwards, students will learn that 3 DNA bases is a triplet and that each triplet codes for a specific amino acid. At this point, the genetic code is introduced and students are challenged to explain how the code contains 64 different triplets. By comparing this number against the number of different amino acids in proteins, students will see how each amino acid is encoded for by more than one triplet and how this explains the degenerate nature of the genetic code. Again, an opportunity is taken to link to gene mutations. Finally, the students are told that most of the nuclear DNA in a eukaryote doesn’t code for a polypetptide and that even within a gene, there are coding and non-coding regions known as exons and introns respectively. The last section of the lesson uses a quiz round to check on all of the key terms which have been met in the two lessons on DNA, genes and chromosomes.
Eukaryotic cells (Edexcel A-level Biology B)
GJHeducationGJHeducation

Eukaryotic cells (Edexcel A-level Biology B)

(1)
This fully-resourced lesson describes the ultrastructure of an eukaryotic cell and describes the relationship between the structure and function of the organelles. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point 2.1 (v) of the Edexcel A-level Biology B specification As cells are the building blocks of living organisms, it makes sense that they would be heavily involved in all of the 10 topics in the Edexcel A-level B course and intricate planning has ensured that links are made to topic 1 and details are provided to link to the upcoming topics. A wide range of activities, that include exam-style questions, class discussion points and quick quiz competitions, will maintain motivation and engagement whilst covering the finer details of the following structures and organelles: nucleus nucleolus ribosomes rough endoplasmic reticulum Golgi apparatus lysosomes smooth endoplasmic reticulum mitochondria cell surface membrane centrioles vacuole (+ tonoplast) chloroplasts cell wall As mentioned above, all of the worksheets have been differentiated to support students of differing abilities whilst maintaining challenge Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours of allocated A-level teaching time to cover the work
OCR Gateway A GCSE Combined Science REVISION LESSONS
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science REVISION LESSONS

18 Resources
This bundle of 18 lessons uses a range of exam questions, tasks, activities and quiz competitions to engage students whilst they assess their knowledge of the topics in modules B1-6, C1-6 and P1-6 of the OCR Gateway A GCSE Combined Science specification. All of the lessons are fully resourced to take away that worry about how to get students to effectively revise in the lead up to assessments.
Temporal and spatial SUMMATION and inhibition (AQA A-level Biology)
GJHeducationGJHeducation

Temporal and spatial SUMMATION and inhibition (AQA A-level Biology)

(1)
This engaging lesson covers the detail of the 2nd part of specification point 6.2.2 of the AQA A-level Biology specification which states that students should be able to explain temporal and spatial summation as well as understand inhibition by inhibitory synapses. This is a topic which is generally poorly understood by students or brushed over so considerable time has been taken to design the activities to motivate the students so that the content is memorable whilst still being covered in detail. Links are continually made to earlier topics in this module such as synapses and generator potentials but also to topics covered in the previous year and still to be covered. The lesson begins by challenging the students to recognise a description of generator potential and they will then discover that this is also known as an EPSP. Students will recall that a small depolarisation may not lead to the opening of the voltage gated channels and therefore the full depolarisation which is needed for the initiation of an action potential and will discuss how this problem could be overcome. Lots of discussion points like this are included in the lesson to encourage the students to challenge and debate why a particular process of mechanism occurs. Students will therefore learn that EPSPs can be combined and this is known as summation. A quiz round is used to introduce temporal and spatial summation. Moving forwards, students are presented with a number of examples where they have to decide why type of summation is involved. Again, the lesson has been written to include real-life examples such as chronic pain conditions so the chances of the content sticking is increased. The final part of the lesson introduces IPSPs and the effect of these on summation and action potentials is discussed. This lesson has been designed for students studying on the AQA A-level Biology course and ties in well with the other uploaded lessons from topic 6 which include cholinergic synapses and neuromuscular junctions, sensory receptors and nerve impulses
Structure of DNA - GCSE
GJHeducationGJHeducation

Structure of DNA - GCSE

(1)
A fully-resourced lesson which looks at the structure of DNA in the detail which is required at GCSE level (14 - 16 year olds in the UK). The lesson includes an engaging lesson presentation (35 slides) and associated worksheets. The main aim of the lesson is to ensure that students recognise key terminology that comes with this topic such as nucleotide and (nitrogenous) bases. Engaging tasks have been written into the lesson, in order to maintain the motivation, such as when students are introduced to complimentary base pairing through a version of the gameshow “Take me Out”. Additional knowledge is provided at appropriate times in the lesson to stretch and challenge the more able. There are regular progress checks throughout the lesson so that students can assess their understanding of the structure. As stated above, this lesson has been written for GCSE students but could be used with younger students and also with A-level students as a means of a recap before they learn about this in greater detail.
ATP (AQA A-level Biology)
GJHeducationGJHeducation

ATP (AQA A-level Biology)

(1)
Adenosine triphosphate is the universal energy currency and this lesson focuses on the structure of this nucleotide derivative. The PowerPoint has been designed to cover point 1.6 of the AQA A-level Biology specification and also explains how ATP must be hydrolysed to release energy and then re-synthesised during respiration and photosynthesis. As the previous sub-topic concerned the structure of DNA and RNA, the start of this lesson challenges the students on their knowledge of these polynucleotides so that they can recognise that this molecule consists of adenine, ribose and three phosphate groups. In order to release the stored energy, ATP must be broken down and students will be given time to discuss which reaction will be involved as well as the products of this reaction. Time is taken to describe how the hydrolysis of ATP can be coupled to energy-requiring reactions within cells and the examples of active transport and skeletal muscle contraction are used as these are covered in greater detail in topic 2 and 6. The final part of the lesson considers how ATP must be re-synthesised and students will learn that this occurs in the mitochondria and chloroplast during aerobic respiration and photosynthesis respectively.
Sampling techniques
GJHeducationGJHeducation

Sampling techniques

(1)
A fully-resourced lesson that looks at the different sampling methods that can be used to estimate the populations of animals and plants in a habitat and to analyse how their distribution is affected, The lesson includes a detailed and engaging lesson presentation (56 slides) and differentiated worksheets so that students of different abilities are challenged and can access the work. The lesson begins by looking at the use of a quadrat to estimate the population of plants in a habitat. There is a focus on the mathematical calculations associated with the method and students are given hints and worked examples so that any common misconceptions are addressed. Moving forwards, students are introduced to the capture-mark-recapture technique to sample animals. The rest of the lesson looks at alternative pieces of apparatus, such as the sweep net, and discusses situations when these would be used. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but is appropriate for both younger students who are learning about ecology and also for A-level students who need a recap on this topic.