Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
OCR Gateway GCSE Biology A Paper 2 REVISION (Topics B4 - B6)
GJHeducationGJHeducation

OCR Gateway GCSE Biology A Paper 2 REVISION (Topics B4 - B6)

(0)
This is a highly-detailed revision resource which has been designed to be used over a number of lessons and allows teachers to dip in and out of the material as fits to the requirements of their classes and students. The resource consists of an engaging and detailed powerpoint (135 slides) and worksheets which have been differentiated to allow students of differing abilities to be challenged and access the work. The lesson consists of a wide range of activities which will engage and motivate the students and includes exam questions, quiz competitions and quick tasks. The lesson has been designed to cover as many of the sub-topics within topics 4, 5 and 6 of the OCR Gateway GCSE Biology A specification but the following sub-topics have been given particular attention: Topic B4: Community-level systems Ecological terms Carbon cycle Topic B5: Genes, inheritance and selection The effect of mutations on phenotypes Single-gene crosses Sex determination Genetic terminology Topic B6: Global challenges Communicable diseases Genetic engineering Vaccinations CHD This revision resource can be used in the lead up to mocks or the actual GCSE exams and due to its size, it could be repeatably used to ensure that students develop a deep understanding of these topics.
OCR A-level Biology 2.1.6 REVISION (Cell division, cell diversity and cellular organisation)
GJHeducationGJHeducation

OCR A-level Biology 2.1.6 REVISION (Cell division, cell diversity and cellular organisation)

(0)
This revision resource has been designed with the simple aim of motivating the students whilst they assess their understanding of the content found in module 2.1.6 (Cell division, cell diversity and cellular organisation) of the OCR A-level Biology A specification. The resource includes a detailed and engaging Powerpoint (75 slides) and an associated worksheet, which has been differentiated to allow students of differing abilities to access that task. The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention: The main stages of mitosis The cell cycle including the stages of interphase and cytokinesis The significance of meiosis in terms of variation The main stages of meiosis How the cells of animals are specialised to perform particular functions The features of squamous and ciliated epithelium How the cells of plants are specialised to perform particular functions In addition to these topics, some topics from other modules such as organelles and magnification are tested in order to challenge the students on their ability to make links between the modules. The range of activities include exam questions and understanding checks as well as quiz competitions to maintain student engagement.
WJEC GCSE Biology Topic 1.4 REVISION (Circulatory system in humans)
GJHeducationGJHeducation

WJEC GCSE Biology Topic 1.4 REVISION (Circulatory system in humans)

(0)
This revision resource has been designed to include a range of activities such as exam questions, understanding checks and quiz competitions which will motivate the students whilst they assess their understanding of the content found in topic 1.4 (Circulatory system in humans) of the WJEC GCSE Biology specification. The resource includes a detailed and engaging Powerpoint (58 slides) and associated worksheets, some of which have been differentiated to allow all abilities of students to access the work. The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention: The structure of a phagocyte and a red blood cell The functions of the plasma and the platelets The structure of arteries and veins and how this relates to their function The role of coronary arteries in supplying oxygenated blood to the heart cells The risk factors and treatments for cardiovascular diseases The structure of the heart and the pathway of blood through the double circulatory system
WJEC GCSE Biology Topic 1.1 REVISION (Cells and movement across cell membranes)
GJHeducationGJHeducation

WJEC GCSE Biology Topic 1.1 REVISION (Cells and movement across cell membranes)

(0)
This revision resource includes exam questions, understanding checks and quiz competitions, all of which have been designed with the aim of motivating and engaging the students whilst they assess their understanding of the content found in topic 1.1 (Cells and movement across cell membranes) of the WJEC GCSE Biology specification. The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention: Active transport as an active process The differentiation of cells in animal and plants to become adapted for specific functions Osmosis The functions of the organelles of animal and plant cells Enzymes as proteins which speed up reactions The active site, substrates and enzyme-substrate complexes The effect of pH on enzyme activity Diffusion as a passive process, which allows substances including oxygen and carbon dioxide to pass across a membrane
Temperature regulation (WJEC GCSE Biology)
GJHeducationGJHeducation

Temperature regulation (WJEC GCSE Biology)

(0)
The engaging Powerpoint and accompanying worksheet which come as part of this lesson resource have been designed to cover specification point 2.5 (k) as detailed in the WJEC GCSE Biology specification which states that students should understand the roles of the effectors in temperature regulation. A wide range of activities which include Biology and Maths tasks and quiz competitions are interspersed with understanding and prior knowledge checks so that students are engaged and motivated whilst learning the key content in a memorable way and checking their progress. Students will learn that the body temperature is maintained at 37 degrees celsius by a homeostatic control system called thermoregulation and will be challenged to recall the topic of enzymes to explain why this is so important. Time is taken to look at the responses brought about the effectors such as vasodilation and shivering and links are made to the structures of the skin such as the involvement of the erector muscles. Students will recognise how these mechanisms lead a decrease or increase in body temperature back to the set point. Links are also made between the Sciences so that there is a deeper understanding of exactly why sweating cools the body down. This lesson has been designed for students studying the WJEC GCSE Biology course but is suitable for older students who are studying Biology at A-level and need to recall the key details of thermoregulation.
Inheritance of sex-linked genetic disorders (Edexcel GCSE Biology)
GJHeducationGJHeducation

Inheritance of sex-linked genetic disorders (Edexcel GCSE Biology)

(0)
This fully-resourced lesson has been written to cover the content of point 3.18 (sex-linked genetic disorders) as detailed in the Edexcel GCSE Biology specification. This resource consists of an engaging and detailed PowerPoint and accompanying worksheet, which has been differentiated two ways so students who find the tasks difficult are given assistance to result in good outcomes. The lesson builds on the knowledge from earlier in the topic on monohybrid inheritance and sex determination to show students how to draw genetic diagrams to calculate offspring outcomes when the gene is carried on the sex chromosomes. Step by step guides are used to demonstrate how to write the genotypes and gametes in these disorders by including the sex chromosomes to show gender. The lesson focuses on red-green colour blindness and haemophilia and builds up to questions on a pedigree tree to challenge the students to apply their new knowledge. This lesson has been designed for GCSE-aged students who are studying the Edexcel GCSE Biology course but is suitable for A-level students who are looking at these types of genetic disorders.
The function of the kidney, kidney failure and the formation of urea (Edexcel GCSE Biology)
GJHeducationGJHeducation

The function of the kidney, kidney failure and the formation of urea (Edexcel GCSE Biology)

(0)
This detailed resource has been designed to cover the content of points 7.19, 7.20, 7.21 and 7.22 (The structure and function of the nephron of the kidney, kidney failure and the production of urea) as set out in topic 7 of the Edexcel GCSE Biology specification. This resource contains an engaging and detailed PowerPoint (66 slides) and accompanying worksheets, which have been differentiated so that students of different abilities can access the work. The detail of the content and this resource means that it is likely to take at least 2 lessons to go through the tasks. The resource is filled with a wide range of activities, each of which has been designed to engage and motivate the students whilst ensuring that the key Biological content is covered in good detail. Understanding checks are included throughout so that the students can assess their grasp of the content. In addition, prior knowledge checks make links to content from earlier topics such as homeostasis, osmosis and diabetes. The following content is covered in this lesson: The formation of urea by the break down of excess amino acids in the liver Filtration of the blood in the glomerulus and the Bowman’s capsule The selective reabsorption of glucose The reabsorption of water The effect of ADH on the permeability of the collecting duct and the production of concentrated urine Treatment of kidney failure by dialysis or organ transplant As stated at the top, this lesson has been designed for GCSE-aged students who are studying the Edexcel GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the function of the nephron in more detail
2.1.2 REVISION: Biological molecules (OCR A-level Biology A)
GJHeducationGJHeducation

2.1.2 REVISION: Biological molecules (OCR A-level Biology A)

(0)
This is a fully-resourced and engaging REVISION LESSON which challenges the students on their knowledge and understanding of the content of module 2.1.2 (Biological molecules) of the OCR A-level Biology A specification. As this topic tends to be poorly understood by students, the lesson has been designed to include a wide range of activities that include differentiated exam questions, quick tasks and quiz competitions which will engage the students whilst they assess their progress. It has been designed to cover as much of the specification as possible but the following sub-topics have received particular attention: Formation of polysaccharides by glycosidic bonds between monomers Recognising monosaccharides, disaccharides and polysaccharides The structure of starch and glycogen in relation to their function as stores and providers of energy Water as a solvent with a high specific heat capacity and a high specific latent heat of vaporisation Structure and bonding in proteins The structure of globular and fibrous proteins as demonstrated by haemoglobin and collagen The structure and function of cellulose Links are made to other topics so that students are able to see how questions can include parts from different Biological concepts
OCR A-level Biology GENETIC TERMINOLOGY
GJHeducationGJHeducation

OCR A-level Biology GENETIC TERMINOLOGY

(0)
This lesson acts as an introduction to part b of module 6.1.2 of the OCR A-level Biology A specification and focuses on 16 key genetic terms. In this module, students are expected to be able to demonstrate and apply their knowledge and understanding of genetic diagrams and phenotypic ratios to show patterns of inheritance and this is only possible with a clear understanding of the genetic terminology that will be used in related exam questions. As some of these terms were met at GCSE, this fully-resourced lesson has been designed to include a wide range of activities that build on this prior knowledge and provide clear explanations as to their meanings as well as numerous examples of their use in both questions and exemplary answers. The main task provides the students with an opportunity to apply their understanding by recognising a dominance hierarchy in a multiple alleles characteristic and then calculating a phenotypic ratio when given a completed genetic diagram. Other tasks include prior knowledge checks, discussion points to encourage students to consider the implementation of the genetic terms and quiz competitions to introduce new terms, maintain engagement and act as an understanding check. The 16 terms are genome, gene, chromosome, gene locus, homologous chromosomes, alleles, dominant, recessive, genotype, codominance, multiple alleles, autosomes, sex chromosomes, phenotype, homozygous and heterozygous
Using ECGs (Edexcel A-level Biology)
GJHeducationGJHeducation

Using ECGs (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the use of electrocardiograms to aid the diagnosis of CVD and other heart conditions. The engaging PowerPoint and accompanying resources have been designed to cover point 7.8 (iii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also make continual links to earlier specification points like 1.4 and 1.5 where heart topics were previously covered. The lesson has been written to take place in an imaginary cardiology ward where the students are initially challenged on their knowledge of the symptoms and risk factors of CVD before looking at testing through the use of ECGs and diagnosis. The main focus of the lesson is the ECG and a quiz competition is used to introduce the reference points of P, QRS and T before time is taken to explain their representation with reference to the cardiac cycle. Moving forwards, a SPOT the DIFFERENCE task is used to challenge the students to recognise differences between sinus rhythm and some abnormal rhythms including tachycardia and atrial fibrillation. Bradycardia is used as a symptom of sinus node disfunction and the students are encouraged to discuss this symptom along with some others to try to diagnose this health problem. This lesson has been designed to tie in with the lesson that covers the previous specification point on the normal electrical activity of the heart and the myogenic nature of cardiac muscle
The fate of lactate (Edexcel A-level Biology)
GJHeducationGJHeducation

The fate of lactate (Edexcel A-level Biology)

(0)
This fully-resourced lesson explores what happens to lactate after a period of anaerobic respiration as detailed in point 7.7 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. Students will learn how pyruvate is converted to lactate using reduced NAD and that the reoxidation of the coenzyme allows glycolysis to continue. The lesson begins with a focus on the coenzyme, NAD, and students are challenged to recall details of its role in the oxidation of triose phosphate. Students will learn that oxidative phosphorylation in aerobic respiration allows these coenzymes to be reoxidised but that another metabolic pathway has to operate when there is no oxygen. Time is taken to go through the lactate fermentation pathway and students are encouraged to discuss the conversions before applying their knowledge to complete the diagram and passages about the pathway. Students are introduced to the oxygen debt and will learn how the volume consumed after vigorous exercise is used to catabolise lactic acid and to restore the body’s stores to normal levels.
The Link Reaction (OCR A-level Biology)
GJHeducationGJHeducation

The Link Reaction (OCR A-level Biology)

(0)
This clear and concise lesson covers the Link reaction and its site in the cell as detailed in point 5.2.2 (d) of the OCR A-level Biology A specification. The PowerPoint explains how the product of glycolysis, pyruvate, is decarboxylated and dehydrogenated and combined with coenzyme A to form acetyl coenzyme A which will then enter the Krebs cycle. The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that this stage occurs in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the Link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis and the Krebs cycle and oxidative phosphorylation.
Oxidative phosphorylation (AQA A level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (AQA A level Biology)

(0)
This detailed and clear lesson describes and explains how the electron transport chain and the chemiosmotic theory are involved in the synthesis of ATP by oxidative phosphorylation. The PowerPoint has been designed to cover the sixth part of point 5.2 of the AQA A-level Biology A specification and also looks at the role of the enzyme, ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 steps and at each point, key facts are discussed and explored in detail to enable a deep understanding to be developed. Students will see how the proton gradient is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP. Understanding checks are included throughout the lesson to enable the students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis, the Link reaction and Krebs cycle and anaerobic respiration.
Formation of tissue fluid (AQA A-level Biology)
GJHeducationGJHeducation

Formation of tissue fluid (AQA A-level Biology)

(0)
This fully-resourced lesson explains how a combination of hydrostatic pressure and oncotic pressure results in the formation of tissue fluid in animals. The detailed PowerPoint and accompanying resources have been designed to cover the final part of point 3.4.1 of the AQA A-level Biology specification The lesson begins with an introduction to the arteriole and venule end of a capillary as these will need to be considered as separate entities when describing the formation of tissue fluid. A quick quiz competition introduces a value for the hydrostatic pressure at the arteriole end and students are challenged to first predict some parts of the blood will move out of the capillary as a result of the push from the hydrostatic pressure and this allows oncotic pressure to be initially explored. The main part of the lesson uses a step by step guide to describe how the net movement is outwards at the arteriole end before students will use this guidance to describe what happens at the venule end. In the concluding part of the lesson, students will come to recognise oedema as a condition where tissue fluid accumulates and they again are challenged to explain how this occurs before they finally learn how the fluid is returned to the circulatory system as lymph.
Negative & positive feedback (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Negative & positive feedback (Edexcel Int. A-level Biology)

(0)
This lesson describes the meaning of positive feedback and explains how negative feedback control is involved in maintaining systems within narrow limits. The PowerPoint and accompanying resources have been designed to cover points 7.16 (i) and (ii) of the Edexcel International A-level Biology specification but also provide introductory details for upcoming topics such as the importance of homeostasis during exercise and the depolarisation of a neurone. The normal ranges for blood glucose concentration, blood pH and body temperature are introduced at the start of the lesson to allow students to recognise that these aspects have to be maintained within narrow limits. A series of exam-style questions then challenge their recall of knowledge from topics 1 - 6 as they have to explain why it’s important that each of these aspects is maintained within these limits. The students were introduced to homeostasis at GCSE, so this process is revisited and discussed, so that students are prepared for an upcoming lesson on exercise, as well as for the next part of the lesson on negative feedback control. Students will learn how this form of control reverses the original change and biological examples are used to emphasise the importance of this system for restoring levels to the limits (and the optimum). The remainder of the lesson explains how positive feedback differs from negative feedback as it increases the original change and the role of oxytocin in birth and the movement of sodium ions into a neurone are used to exemplify the action of this control system.
Homeostasis (Edexcel A-level Biology B)
GJHeducationGJHeducation

Homeostasis (Edexcel A-level Biology B)

(0)
This lesson describes the importance of homeostasis using negative feedback control and also describes the meaning of positive feedback. The PowerPoint and accompanying resources have been designed to the content with point 9.1 of the Edexcel A-level Biology B specification and explains how this feedback control maintains systems within narrow limits but has also been planned to provide important details for upcoming topics such as osmoregulation, thermoregulation and the depolarisation of a neurone. The normal ranges for blood glucose concentration, blood pH and body temperature are introduced at the start of the lesson to allow students to recognise that these aspects have to be maintained within narrow limits. A series of exam-style questions then challenge their recall of knowledge from topics 1-8 to explain why it’s important that each of these aspects is maintained within these limits. The students were introduced to homeostasis at GCSE, so this process is revisited and discussed, to ensure that students are able to recall that this is the maintenance of a state of dynamic equilibrium. A quick quiz competition is used to reveal negative feedback as a key term and students will learn how this form of control reverses the original change and biological examples are used to emphasise the importance of this system for restoring levels to the limits (and the optimum). The remainder of the lesson explains how positive feedback differs from negative feedback as it increases the original change and the role of oxytocin in birth and the movement of sodium ions into a neurone are used to exemplify the action of this control system.
The role of adrenaline (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The role of adrenaline (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the roles of adrenaline in the fight or flight response. The engaging PowerPoint and accompanying resources have been designed to cover point 7.14 of the Edexcel International A-level Biology specification At the start of the lesson, the students have to use the knowledge acquired in the most recent lessons on the function of the heart to reveal the key term medulla and this leads into the description of the structure of the adrenal glands in terms of this inner region. The main part of the lesson focuses on the range of physiological responses of the organs to the release of adrenaline. Beginning with glycogenolysis, the need for adrenaline to bind to adrenergic receptors is described, including the activation of cyclic AMP. A quiz competition is used to introduce other responses including lipolysis, vasodilation, bronchodilation and an increase in stroke volume. Links to previous topics are made throughout the lesson and students are challenged on their knowledge of heart structure, triglycerides and polysaccharides.
Cell specialisation and organisation (OCR A-level Biology A)
GJHeducationGJHeducation

Cell specialisation and organisation (OCR A-level Biology A)

(0)
This fully-resourced lesson describes how the cells of multicellular organisms are specialised for particular functions and organised into tissues, organs and organ systems. The detailed and engaging PowerPoint and accompanying resources have been designed to cover points 2.1.6 (h, i, j and k) of the OCR A-level Biology A specification and also describes how stem cells differentiate, including the production of erythrocytes (red blood cells) and neutrophils. The start of the lesson focuses on the difference in the SA/V ratio of an amoeba and a human in order to begin to explain why the process of differentiation is critical for multicellular organisms. Students will discover that a zygote is a stem cell which can express all of the genes in its genome and divide by mitosis. Time is then taken to introduce gene expression as this will need to be understood in the later topics of the course. Moving forwards, the lesson uses the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students will understand why the shape and arrangement of these cells differ in the trachea and alveoli in line with function. The link between specialised cells and tissues is made at this point of the lesson with these examples of epithelium and students will also see how tissues are grouped into organs and then into organ systems. The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy mesophyll cells and the guard cells are covered at length and in detail. Step by step guides will support the students so that they can recognise the importance of the structures and links are made to upcoming topics such as the vascular tissues so that students are prepared for these when covered in the future.
Formation of urea & ultrafiltration (Edexcel A-level Biology B)
GJHeducationGJHeducation

Formation of urea & ultrafiltration (Edexcel A-level Biology B)

(0)
This detailed lesson describes how urea is formed in the liver by deamination and then removed from the bloodstream by ultrafiltration at the kidney. The PowerPoint and accompanying resources have been designed to cover point 9.9 (ii) of the Edexcel A-level Biology B specification. The first part of the lesson describes how deamination and the ornithine cycle forms urea. Although the students are not required to know the details of the cycle, it is important that they are aware of how the product of deamination, ammonia, is converted into urea (and why). Moving forwards, the rest of the lesson has been written to allow the students to discover ultrafiltration as a particular function and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem
The products of photosynthesis (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The products of photosynthesis (Edexcel Int. A-level Biology)

(0)
This lesson describes how the products of the light-independent reactions of photosynthesis are used by plants, animals and other organisms. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.4 (ii) of the Edexcel International A-level Biology specification concerning the uses of GP and GALP but as the lesson makes continual references to biological molecules, it can act as a revision tool for a lot of the content of topic 1 and 2. The previous lesson described the light-independent reactions and this lesson builds on that understanding to demonstrate how the intermediates of the cycle, GP and GALP, are used. The start of the lesson challenges the students to identify two errors in a diagram of the cycle so that they can recall that most of the GALP molecules are used in the regeneration of ribulose bisphosphate. A quiz version of Pointless runs throughout the lesson and this is used to challenge the students to recall a biological molecule from its description. Once each molecule has been revealed, time is taken to go through the details of the formation and synthesis of this molecule from GALP or from GP in the case of fatty and amino acids. The following molecules are considered in detail during this lesson: glucose (and fructose and galactose) sucrose starch and cellulose glycerol and fatty acids amino acids nucleic acids A range of activities are used to challenge their prior knowledge of these molecules and mark schemes are always displayed for the exam-style questions to allow the students to assess their understanding. As detailed above, this lesson has been specifically written to tie in with the earlier lessons in this topic on the structure of the chloroplast and the light-dependent and light-independent reactions of photosynthesis