Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)
GJHeducationGJHeducation

The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)

(0)
This is a detailed lesson resource that covers the content of point 5.1.3 (a) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their understanding of the roles of mammalian sensory receptors. There is a particular focus on the Pacinian corpuscle to demonstrate how these receptors act as transducers by converting one form of energy into electrical energy which is then conducted as an electrical impulse along the sensory neurone. The lesson begins by looking at the different types of stimuli that can be detected. This leads into a written task where students have to form sentences to detail how thermoreceptors, rods and cones, hair cells in the inner ear and vibration receptors in the cochlea convert different forms of energy into electrical energy. Students will be introduced to the term transducer and will be challenged to work out what these cells carry out by using their sentences. As stated above, students will meet a Pacinian corpuscle and learn that this receptors detects pressure changes in the skin using the concentric rings of connective tissue in its structure. The rest of the lesson focuses on how ions are involved in the maintenance of resting potential and then depolarisation. Time is taken to look into the key details of these two processes so students are confident with this topic when met again during a lesson on the generation of action potentials. All of the tasks are differentiated to allow students of different abilities to access the work. As well as understanding checks to allow the students to assess their progress against the current topic, there are also a number of prior knowledge checks on topics like inorganic ions and methods of movement. This lesson has been designed for students studying the OCR A-level Biology course
OCR Gateway A GCSE Combined Science B2 (Scaling Up) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science B2 (Scaling Up) REVISION

(0)
This engaging lesson presentation (52 slides) and associated worksheets uses exam questions with displayed mark schemes, quick tasks and quiz competitions to enable students to assess their understanding of the topics found within module B2 of the OCR Gateway A Combined Science specification. The topics which are specifically tested within the lesson include: Diffusion, Osmosis, Active transport, Exchange and transport, Circulatory system, Heart and blood, Plant transport systems, Students will enjoy the competitions such as "Where's Lenny?" and "Take the Hotseat" whilst being able to recognise those areas which need their further attention.
Structure & properties of starch, glycogen and cellulose (OCR A-level Biology)
GJHeducationGJHeducation

Structure & properties of starch, glycogen and cellulose (OCR A-level Biology)

(0)
This detailed and fully-resourced lesson describes the relationship between the structure, properties and functions of glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover specification points 2.1.2 (f) & (g) of the OCR A-level Biology A course and continual links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. The lesson begins with the CARBOHYDRATE WALL where students have to use their prior knowledge to collect the 9 carbohydrates on show into 3 groups. This results in glycogen, starch and cellulose being grouped together as polysaccharides and the structure, properties and functions of these large carbohydrates are covered over the course of the lesson. Students will learn how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also dictate whether the chain spirals or not. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses and they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. The importance of the compact structure for storage is discussed as well as the branched chains of amylopectin acting as quick source of energy when it is needed. In the final part of the lesson, time is taken to focus on the hydrogen bonds between rotated glucose molecules on the same chain and between different chains and to explain how the formation of cellulose microfibrils and macrofibrils provides plant cells with the additional strength needed to support the whole plant. Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete
PAPER 1 FOUNDATION TIER REVISION (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

PAPER 1 FOUNDATION TIER REVISION (Edexcel GCSE Combined Science)

(0)
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics B1 - B5, that will assessed on PAPER 1. It has been specifically designed for students on the Pearson Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to take place at the local hospital where the students have to visit numerous wards and clinics and the on-site pharmacy so that the following sub-topics can be covered: Cancer as the result of uncontrolled cell division The production of gametes by meiosis Mitosis and the cell cycle Sex determination The difference between communicable and non-communicable diseases The pathogens that spread communicable diseases Identification of communicable diseases Treating bacterial infections with antibiotics Evolution of antibiotic resistance in bacteria Vaccinations Genetic terminology Genetic diagrams Structures involved in a nervous reaction A Reflex arc Risk factors Chemical and physical defences Osmosis and percentage gain and loss Fossils as evidence for human evolution In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for assistance sheets when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as genetic diagrams and evolution by natural selection. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 1 exam.
TB and HIV (Edexcel A-level Biology A)
GJHeducationGJHeducation

TB and HIV (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes how Mycobacterium tuberculosis and Human Immunodeficiency virus infect human cells. The PowerPoint and accompanying resources have been designed to cover point 6.6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and ties in directly with the previous lesson where the structure of bacteria and viruses were compared. The lesson begins by ensuring that students recognise that TB is caused by the infection of a species of bacteria known as Mycobacterium tuberculosis and they will challenged to use their knowledge of scientific classification to recall that this pathogen is found in the mycobacteria genus. At this point, the students are told that the cell walls of this genus contain mycolic acids and later in the lesson they will have to work out that this specialist feature enables this pathogen to survive phagocytosis. A series of exam-style questions will challenge their knowledge of the respiratory and immune systems as they can understand how the bacterium travels to the alveoli where it is engulfed by a macrophage. Key terms like granuloma and necrosis are introduced and the sequence of events that occur following the formation of this aggregate of cells is described. The structure of viruses was covered during the previous lesson, so this next part of the lesson starts by challenging the students to recall the capsid, genetic material in the form of viral RNA and the lipid envelope. At this point, the students are introduced to gp120, the glycoprotein which is exposed on the surface of the lipid envelope, as this structure is critical for the entry of the virus into host cells. Students will annotate a basic diagram of HIV with these four structures which also has gp41 labelled. A quick quiz competition introduces the names of the enzymes found inside the capsid Moving forwards, the main task of this part of the lesson describes how HIV binds to the helper T cells, injects its capsid and integrates its DNA into the host’s genome in order to replicate to form virus particles (virions). Students are guided through the formation of a detailed answer about the mechanism of HIV and have to input key terms and structures where information is missing. Students will learn that the increase in the number of virus particles and a decrease in helper T cells and other immune cells results in infections like TB and by opportunistic pathogens and that this stage is recognised as AIDS
Eukaryotic cells (OCR A-level Biology)
GJHeducationGJHeducation

Eukaryotic cells (OCR A-level Biology)

(0)
This fully-resourced lesson describes the ultrastructure of eukaryotic cells and the functions of the different cellular components. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 2.1.1 (g) & (i) of the OCR A-level Biology A specification and therefore also describes the interrelationship between the organelles involved in the production and secretion of proteins. As cells are the building blocks of living organisms, it makes sense that they would be heavily involved in all 6 modules in the OCR course and intricate planning has ensured that links to the lessons earlier in module 2.1.1 are made as well as to the upcoming modules. The lesson uses a wide range of activities, that include exam-style questions, class discussion points and quick quiz competitions, to maintain motivation and engagement whilst describing the relationship between the structure and function of the following organelles: nucleus nucleolus centrioles ribosomes rough endoplasmic reticulum Golgi apparatus lysosomes smooth endoplasmic reticulum mitochondria cell surface membrane vacuole chloroplasts plasmodesmata Details of the cilia and flagella are covered in the lesson on the importance of the cytoskeleton. All of the worksheets have been differentiated to support students of differing abilities whilst maintaining challenge Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours of allocated A-level teaching time to go through all of the tasks
The BLOOD VESSELS (OCR A-level Biology)
GJHeducationGJHeducation

The BLOOD VESSELS (OCR A-level Biology)

(0)
This fully-resourced lesson explores how the structure of arteries, arterioles, capillaries, venules and veins relate to their functions. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 3.1.2 © of the OCR A-level Biology A specification. This lesson has been written to build on any prior knowledge from GCSE or earlier in this topic to enable students to fully understand why a particular type of blood vessel has particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of the GUESS WHO game is used to introduce smooth muscle and collagen in the tunica media and externa and again the reason for their presence is explored and explained. Moving forwards, it is quite likely that some students will not be aware of the transition vessels that are the arterioles. This section begins with an understanding of the need for these vessels because the structural and functional differences between arteries and capillaries is too significant. The action of the smooth muscle in the walls of these vessels is discussed and students will be challenged to describe a number of situations that would require blood to be redistributed. The middle part of the lesson looks at the role of the capillaries in exchange and links are made to diffusion to ensure that students can explain how the red blood cells pressing against the endothelium results in a short diffusion distance. The remainder of the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels. It is estimated that it will take at least 2 hours of allocated A-level Biology teaching time to cover the detail included in this lesson
Cardiac cycle (OCR A-level Biology)
GJHeducationGJHeducation

Cardiac cycle (OCR A-level Biology)

(0)
This detailed and fully-resourced lesson describes and explains the pressure changes in the heart and arteries and the role of the valves movements in the cardiac cycle. The PowerPoint and accompanying resources have been designed to cover point 3.1.2 (f) of the OCR A-level Biology A specification and also covers the use of the equation stroke volume x heart rate to calculate cardiac output The start of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by diastole. Students are challenged on their prior knowledge of the structure of the heart as they have to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the next part of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. Moving forwards, the students are introduced to the stroke volume and meet normative values for this and for resting heart rate. This will lead into the calculation for cardiac output and a series of questions are used to test their ability to apply this equation as well as to calculate the percentage change which is a commonly assessed mathematical skill. This lesson has been written to tie in with the other uploaded lessons on the topics detailed in module 3.1.2 (Transport in animals)
Primary non-specific defences (OCR A-level Biology)
GJHeducationGJHeducation

Primary non-specific defences (OCR A-level Biology)

(0)
This fully-resourced lesson describes the primary non-specific defences against pathogens in animals. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 4.1.1 (d) of the OCR A-level Biology A specification and describes the following defences: skin key steps of the blood clotting process release of histamine in the inflammatory response expulsive reflexes mucous membranes There are clear links to topics in modules 2 and 3 in each of these defences so time is taken to consider these during the descriptions. For example, the presence of keratin in the cytoplasm of the skin cells allows the student knowledge of the properties of this fibrous protein to be checked. Other topics that are revisited during this lesson include protein structure, formation of tissue fluid, key terminology and roles of inorganic ions in biological processes. There is also a section of the lesson which refers to the genetics behind haemophilia and students are challenged to apply knowledge to an unfamiliar situation. This will prepare them for this topic when covered in module 6.1.2 All of the exam-style questions and tasks have mark schemes that are embedded in the PowerPoint and a number of them have been differentiated to allow students of differing abilities to access the work.
In situ and ex situ conservation (OCR A-level Biology A)
GJHeducationGJHeducation

In situ and ex situ conservation (OCR A-level Biology A)

(0)
This lesson describes the in situ and ex situ methods of maintaining biodiversity, and discusses the advantages and disadvantages associated with both. The engaging PowerPoint and accompanying worksheets have been primarily designed to cover point 4.2.1 (h) of the OCR A-level Biology A specification but the lesson has been carefully planned to enable links to be made to some related topics which are found later in the course such as classification, evolution through natural selection and the Founder effect. Hours of research has gone into the planning of this lesson to source interesting examples that increase the relevance of the biological content concerning in situ conservation, and these include the Lizard National Nature Reserve in Cornwall, the Lake Télé Community reserve in the Republic of Congo and the marine conservation zone in the waters surrounding Tristan da Cunha. Students will learn how this form of active management conserves habitats and species in their natural environment, with the aim of minimising human impact whilst maintaining biodiversity. The main issues surrounding this method are discussed, including the fact that the impact of this conservation may not be significant if the population has lost much of its genetic diversity and that despite the management, the conditions that caused the species to become endangered may still be present. A number of quick quiz competitions are interspersed throughout the lesson to introduce key terms and values in a fun and memorable way and one of these challenges them to use their knowledge of famous scientists to reveal the surname, Fossey. Dian Fossey was an American conservationist and her years of study of the mountain gorillas is briefly discussed along with the issue that wildlife reserves can draw poachers and tourists to the area, potentially disturbing the natural habitat. To enrich their understanding of ex situ conservation, the better known examples of ZSL London zoo, Kew Gardens and the Millennium Seed Bank Project in Wakehurst are used. Students will understand how conserving animal species outside of their natural habitat enables human intervention that ensures the animals are fed and given medical assistance when needed as well as reproductive assistance to increase the likelihood of the successful breeding of endangered species. As with the in situ method, the disadvantages are also discussed and there is a focus on the susceptibility of captive populations to diseases as a result of their limited genetic diversity. The final part of the lesson considers how seed banks can be used to ensure that plant species avoid extinction and how the plants can be bred asexually to increase plant populations quickly. Due to the extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of allocated A-level teaching time to cover the tasks and content that is included in the lesson.
Controlling body temperature
GJHeducationGJHeducation

Controlling body temperature

(0)
A fully-resourced lesson which includes a detailed and engaging lesson presentation (36 slides) and an assistance worksheet for those students who feel that they need extra assistance with the final description. This lesson looks at how body temperature is controlled in humans through a homeostatic mechanism and includes details of a negative feedback loop. The lesson begins with a three pronged task where students have to use the clues to come up with the word homeostasis and the number 37 and then see if they can make the link in the human body. Time is taken to ensure that students recognise why maintaining the temperature around this set-point is so crucial in terms of the effectiveness of enzymes in reactions. There is a real focus on key terminology throughout such as thermoreceptors and hypothalamus and guidance is given on how to use these terms accurately. Discussion points and progress checks are written into the lesson at regular intervals so that students are encouraged to challenge the Biology whilst being able to assess their understanding. They are shown how to write a detailed description of the response to an increase in temperature so they are able to form their own description of the response to a fall in temperature. This lesson has been written for GCSE students but is perfectly suitable for older students studying thermoregulation at A-level and want to revisit the knowledge.
The role of haemoglobin and dissociation curves (Edexcel A-level Biology B)
GJHeducationGJHeducation

The role of haemoglobin and dissociation curves (Edexcel A-level Biology B)

(0)
This detailed lesson describes the role of haemoglobin in the transport of respiratory gases and compares the dissociation curves for foetal and adult haemoglobin. The PowerPoint and accompanying resource have been designed to cover points 4.5 (i), (ii) and (iv) of the Edexcel A-level Biology B specification. The structure of haemoglobin was covered during topic 1, so the start of the lesson acts as a prior knowledge check where the students are challenged to recall that it is a globular protein which consists of 4 polypeptide chains. A series of exam-style questions are then used to challenge them to make the link between the solubility of a globular protein and its role in the transport of oxygen from the alveoli to the respiring cells. Moving forwards, the students will learn that each of the 4 polypeptide chains contains a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. At this point, foetal haemoglobin and its differing affinity of oxygen is introduced and students are challenged to predict whether this affinity will be higher or lower than adult haemoglobin and to represent this on their dissociation curve. The remainder of the lesson looks at the different ways that carbon dioxide is transported around the body that involve haemoglobin. Time is taken to look at the dissociation of carbonic acid into hydrogen ions so that students can understand how this will affect the affinity of haemoglobin for oxygen in an upcoming lesson on the Bohr effect.
Biodiversity & Simpson's Index of Diversity (CIE A-level Biology)
GJHeducationGJHeducation

Biodiversity & Simpson's Index of Diversity (CIE A-level Biology)

(0)
This lesson explains that biodiversity is considered at three levels and describes how the Simpson’s Index of Diversity is used to calculate the biodiversity within a habitat. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 18.1 (a, b & f) of the CIE A-level Biology specification and also covers the meaning of ecosystems and niche as well as some other important ecological terms that are related such as abiotic factors and population. A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs throughout the lesson and has been included to engage the students whilst challenging them to recognise key terms from their definitions. This quiz will introduce species, ecosystems, biodiversity, endemic, heterozygote, distribution and natural selection and each of these terms is put into context once introduced. A series of exam-style questions to challenge the students to explain how the distribution of fish is affected by abiotic factors in an ecosystem. Once biodiversity is revealed through the quiz competition, the students will learn that they need to consider biodiversity within a habitat, within a species and within different habitats so that they can be compared. The rest of the lesson uses step by step guides, discussion points and selected tasks to demonstrate how to determine species richness and the Simpson’s index of diversity. The heterozygosity index is also introduced as a means to consider genetic variation. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise This is a detailed lesson with a lot of tasks (some of which are differentiated), so it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to cover all of the content
Blood glucose concentration (CIE International A-level Biology)
GJHeducationGJHeducation

Blood glucose concentration (CIE International A-level Biology)

(0)
This fully-resourced lesson is highly detailed and covers all of specification points 14.1 (h, i and j) of the CIE International A-level Biology specification which states that students should be able to describe how blood glucose concentration is regulated using negative feedback mechanisms that release insulin or glucagon and outline the role of cyclic AMP. A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The final part of the lesson looks at the role of the secondary messenger, cyclic AMP, and describes how this is involved when glucagon and adrenaline attach to receptors on the liver. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis. This lesson has been written for students studying on the CIE International A-level Biology course and ties in with the other uploaded lessons which cover the content of topic 14.1 (Homeostasis in mammals)
The main stages of MEIOSIS (OCR A-level Biology A)
GJHeducationGJHeducation

The main stages of MEIOSIS (OCR A-level Biology A)

(0)
This lesson describes the main stages of meiosis, focusing on the events which contribute to genetic variation and explains its significance in life cycles. The detailed PowerPoint and accompanying resources have been designed to cover points 2.1.6 (f) & (g) of the OCR A-level Biology A specification and includes description of crossing over, independent assortment, independent segregation and the production of haploid gametes In order to understand how the events of meiosis like crossing over and independent assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent assortment and segregation of chromosomes and chromatids during metaphase I and II and anaphase I and II respectively results in genetically different gametes. The key events of all of the 8 phases are described and there is a focus on key terminology to ensure that students are able to describe genetic structures in the correct context. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam-style questions which challenge the students to apply their knowledge to potentially unfamiliar situations. This lesson has been specifically planned to lead on from the previous two lessons on the cell cycle and the main stages of mitosis and constant references are made throughout to encourage students to make links and also to highlight the differences between the two types of nuclear division
Specialised and efficient exchange surfaces (OCR A-level Biology)
GJHeducationGJHeducation

Specialised and efficient exchange surfaces (OCR A-level Biology)

(0)
This lesson explains the need for specialised exchange surfaces and uses examples to describe the features of an efficient exchange surface. The PowerPoint and accompanying worksheets have been designed to cover points 3.1.1 (a & b) of the OCR A-level Biology A specification and also have been specifically planned to prepare the students for the upcoming lessons in module 3 on gas exchange and mass transport in animals. The students are likely to have been introduced to the surface area to volume ratio at GCSE, but understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of this ratio in order to increase this relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson that walks them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of a single-celled and multicellular organisms and this leads into the next part of the lesson, where the adaptations of large organisms to increase this ratio at the exchange surfaces are covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. In addition to the ratio, time is taken to discuss and describe how the maintenance of a steep concentration gradient and a thin membrane are important for the rate of diffusion and again biological examples are used in humans and other organisms to increase the understanding. Fick’s law of diffusion is also introduced as a mechanism to help the students to recall that surface area, concentration difference and thickness of membrane govern the rate of simple diffusion. As well as making links to upcoming topics, prior knowledge checks are used to challenge the students on their knowledge of previously-covered modules which include inorganic ions, organelles, cell membrane transport and tissues.
Edexcel GCSE Combined Science Topic B5 (Health, disease and the development of medicines)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic B5 (Health, disease and the development of medicines)

(0)
This is a fully-resourced REVISION lesson which challenges the students on their knowledge of the content in TOPIC B5 (Health, disease and the development of medicines) of the Edexcel GCSE Combined Science specification. The lesson uses an engaging PowerPoint (79 slides) and accompanying worksheets to motivate students whilst they assess their understanding of this topic. The lesson has been designed in the way that the students have to work their way through a series of wards at the hospital which deals with communicable diseases caused by a range of pathogens and the non-communicable diseases ward such as the cardiac ward where CHD patients are assessed and treated. A range of exam questions, differentiated tasks and quiz competitions back up the engaging lesson and are used to test the following sub-topics: Bacterial, fungal and viral diseases in animals and plants Treatment of bacterial infections with antibiotics Preventing and reducing the spread of pathogens Vaccinations The physical and chemical defences of the human body The risk factors of CHD The range of surgical treatments for CHD Calculating the BMI Smoking and cardiovascular diseases The mathematical element of the course is also tested throughout the lesson and students are given helpful hints on exam techniques and how to structure answers. This resource is suitable for use at the end of topic B5 or in the lead up to mocks or the actual GCSE exams.
The cardiac cycle and structure of the mammalian heart (Edexcel A-level Biology)
GJHeducationGJHeducation

The cardiac cycle and structure of the mammalian heart (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the cardiac cycle and relates the structure and operation of the mammalian heart to its function. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 1.4 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification As the structure of the heart was covered at GCSE, the lesson has been planned to build on this prior knowledge whilst adding the key details which will enable students to provide A-level standard answers. The primary focus is the identification of the different structures of the heart but it also challenges their ability to recognise the important relationship to function. For example, time is taken to ensure that students can explain why the atrial walls are thinner than the ventricular walls and why the right ventricle has a thinner wall than the left ventricle. Opportunities are taken throughout the lesson to link this topic to the others found in topic 1 including those which have already been covered like circulatory systems as well as those which are upcoming such as the initiation of heart action. There is also an application question where students have to explain why a hole in the ventricular septum would need to be repaired if it doesn’t naturally close over time. The next part of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by cardiac diastole. Students are challenged to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the rest of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. The final part of the lesson covers the changes in the volume of the ventricle. It is estimated that it will take in excess of 2 hours of allocated A-level teaching time to cover the detail included in this lesson as required by this specification point
Biodiversity (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Biodiversity (Edexcel Int. A-level Biology)

(0)
This lesson describes biodiversity and explains how it can be calculated within a species, a habitat and how it can be compared between habitats. The detailed PowerPoint and accompanying resources have been designed to cover points 4.16, 4.17 & 4.18 in unit 2 of the Edexcel International A-level Biology specification and the meaning of endemism is also explained. A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise key terms from their definitions. This quiz will introduce species, population, biodiversity, endemic, heterozygote and natural selection and each of these terms is put into context once introduced. Once biodiversity has been revealed, the students will learn that they are expected to be able to measure biodiversity within a habitat, within a species and within different habitats so that they can be compared. The rest of the lesson uses step by step guides, discussion points and selected tasks to demonstrate how to determine species richness, the heterozygosity index and an index of diversity. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise.
Drawing graphs (Scientific skills)
GJHeducationGJHeducation

Drawing graphs (Scientific skills)

(0)
This engaging and detailed lesson presentation (43 slides) uses a step by step guide to take students through the important scientific skill of drawing graphs to represent data and address all the misconceptions and misunderstandings that often accompany this topic. The lesson begins by explaining to the students how to decide whether data should be represented on a line graph or a bar chart and a competition called "To BAR or not to BAR" is used to allow them to check their understanding while maintaining motivation. Moving forwards, students are shown a 6 step guide to drawing a line graph. Included along the way are graphs that are wrong and explanations as to why so that students can see what to avoid. There are continuous progress checks and a homework is also included as part of the lesson. This lesson is written for students of all ages who are studying Science.