Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The structure of the HEART
GJHeducationGJHeducation

The structure of the HEART

(0)
A fully-resourced lesson which looks at the structure of the human heart and its associated vessels and ensures that students know the journey which blood takes through this organ. The lesson includes an engaging lesson presentation (25 slides), a diagram to label and a worksheet to summarise the journey. The lesson begins with a bit of fun as students see the script to part of an episode from Friends. Students will recognise the alternative definition of the heart and ultimately recall that the function of this organ is to pump blood around the body. Moving forwards, the main task of the lesson involves labelling the four chambers and the blood vessels which bring blood towards and away from the heart. Students are given useful hints along the way to enable them to discover the answers rather than simply being given a finished diagram. Time is taken to look at the valves and discuss their function so that students can understand this role when they encounter them in veins. The lesson concludes with one final task that challenges the students to detail the journey of blood through the heart. There are regular progress checks throughout the lesson to allow the students to check on their understanding. As always, the lesson finishes with a slide containing advanced terminology so that students who have aspirations to take A-level Biology can extend and deepen their knowledge
Sex determination
GJHeducationGJHeducation

Sex determination

(2)
A fully-resourced lesson which looks at how the sex chromosomes which determine gender are inherited in humans. The lesson includes an engaging lesson presentation (24 slides) and an associated worksheet containing knowledge recall and application questions. The lesson begins with a range of different quiz competitions which enable the students to get the answers of X, Y, zygote and 23. With a little bit of assistance, students are challenged to bring these terms together to complete a passage about how the inheritance of either an XX genotype will lead to a female or a XY genotype will lead to a male. Moving forwards, students are told how they will be expected to be able to construct a genetic diagram to show the inheritance of gender and so are given a quick recap before being challenged to do just that. The last part of the lesson gets students to discuss and consider whether females or males are responsible for determining sex in terms of their gametes. There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students primarily but the content is suitable for both KS3 and even A-level students
Anaerobic respiration - GCSE
GJHeducationGJHeducation

Anaerobic respiration - GCSE

(0)
A fully- resourced lesson which looks at the chemical reaction that is anaerobic respiration and ensures that students can understand why this form of respiration can only be used for short periods of time. The lesson includes an engaging lesson presentation (39 slides), a newspaper article and application questions. The lesson begins by challenging the students to recall information about aerobic respiration to recognise that the sole reactant of anaerobic respiration is glucose. A newspaper article about two atheletes from the 10000m race has been written to challenge the students to recognise why one of the athletes wouldnt be able to compete again in the near future whilst the other could. As a result, students will be introduced to lactic acid and will learn how this poisonous substance prevents muscle contraction and causes cramps. Time is taken to ensure that students are familiar with ATP and specifically that they recognise that a much lower yield is produced in this type of respiration. A perfect opportunity is taken to get the students to carry out a mathematical calculation to compare the yields. Oxygen debt is discussed and related back to the original newspaper article. Finally, anaerobic respiration in plants and yeast is considered in terms of fermentation and the word and symbol equation is written so that it can be compared to those from animals. There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students but could be used with higher ability KS3 students or A-level students who want a recap before covering the topic in greater detail on their course.
Aerobic respiration - GCSE
GJHeducationGJHeducation

Aerobic respiration - GCSE

(0)
A resourced lesson which looks at the chemical reaction that is aerobic respiration and ensures that students can apply their knowledge to application questions which challenge them to make links to related topics. The lesson includes an engaging lesson presentation (27 slides) and an associated worksheet containing questions. The lesson begins by challenging the students to recognise a definition for breathing and a definition for respiration. This is aimed at helping them to understand that these are different processes as this is a common misconception made by students. Moving forwards, key details about aerobic respiration are introduced to the students through a range of tasks which include competitions to maintain engagement. Time is taken to ensure that students become familiar with ATP and understand that this is the energy store which will be broken down to release energy for the activities that occur in a living organism. The remainder of the lesson challenges the students to take their new found knowledge of aerobic respiration and apply it to range of unfamiliar situations such as explaining why a root hair cell would have such a large number of mitochondria. There are regular progress checks throughout the lesson to allow the students to check on their understanding. As always, the lesson finishes with a slide containing advanced terminology so that students who have aspirations to take A-level Biology can extend and deepen their knowledge
Antibiotics
GJHeducationGJHeducation

Antibiotics

(0)
An engaging lesson presentation and associated worksheet that looks at the use of antibiotics to treat bacterial infections and the raises the issue of the potential over-use of these substances. The lesson begins by getting the students to recognise the difference between three key terms that begin with anti (antibiotics, antivirals, antiseptics). Students will be introduced to the idea that antibiotics are specific to a small range of bacteria and therefore the correct one has to be selected before being prescribed. Moving forwards, students will meet the idea of the zone of inhibition and will understand how the size of this zone can be used as an indicator to the effectiveness of the treatment. Students are shown how to calculate the size of the zone and then are tested on their ability to apply this mathemetical knowledge. Finally, time is taken to look at the links to the topic of natural selection to explain how some bacteria are resistant to certain antibiotics. There are regular progress checks throughout the lesson so that students can assess their understanding. This lesson has been designed for GCSE students but could be used as an introduction with A-level Biology students who are about to begin the topic of immunity.
Chi-squared test (OCR A-level Biology)
GJHeducationGJHeducation

Chi-squared test (OCR A-level Biology)

(1)
This lesson guides students through the use of the chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated worksheets that have been designed to cover point 6.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the test to compare the observed and expected results of a genetic cross The lesson has been written to include a step-by-step guide that demonstrates how to carry out the test in small sections. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty.
Hardy-Weinberg principle (OCR A-level Biology)
GJHeducationGJHeducation

Hardy-Weinberg principle (OCR A-level Biology)

(8)
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equations to determine the frequency of alleles and genotypes in a population. Both the detailed PowerPoint and differentiated practice questions on a worksheet have been designed to cover point 6.1.2 (f) of the OCR A-level Biology specification which states that students should be able to demonstrate and apply their knowledge and understanding of the use of the principle to calculate allele frequencies in populations. The lesson begins by looking at the two equations and ensuring that students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged.
Sex-linkage (OCR A-level Biology A)
GJHeducationGJHeducation

Sex-linkage (OCR A-level Biology A)

(0)
This fully-resourced lesson explores the inheritance of sex-linked diseases in humans and then challenges the students to apply their knowledge to examples in other animals. The detailed PowerPoint and associated differentiated resources have been designed to cover the part of point 6.1.2 (b[i]) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of genetic diagrams which include sex-linkage. Key genetic terminology is used throughout and the lesson begins with a check on their ability to identify the definition of homologous chromosomes. Students will recall that the sex chromosomes are not fully homologous and that the smaller Y chromosome lacks some of the genes that are found on the X. This leads into one of the numerous discussion points, where students are encouraged to consider whether females or males are more likely to suffer from sex-linked diseases. In terms of humans, the lesson focuses on haemophilia and red-green colour blindness and a step-by-step guide is used to demonstrate how these specific genetic diagrams should be constructed and how the phenotypes should then be interpreted. The final tasks of the lesson challenge the students to carry out a dihybrid cross that involves a sex-linked disease and an autosomal disease before applying their knowledge to a question about chickens and how the rate of feather production in chicks can be used to determine gender. All of the tasks are differentiated so that students of differing abilities can access the work and all exam questions have fully-explained, visual markschemes to allow them to assess their progress and address any misconceptions.
Osmosis
GJHeducationGJHeducation

Osmosis

(0)
A fully-resourced lesson that looks at the topic of osmosis and how the movement of water between a cell and the solution can affect the appearance of an animal and a plant cell. This lesson includes a detailed and engaging lesson presentation (42 slides) and differentiated worksheets that include exam questions that can be set as homework. There is a lot of key terminology associated with this topic and time is taken to ensure that students understand the meaning of each of these terms before moving forwards. Students are introduced to the different types of solutions and then a step-by-step guide is used to show them how to compare the water potential of the solution and the cell and then how this will determine which was water moves. The main task is differentiated so that students are challenged and can access the work. This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is also suitable for A-level students
Active transport
GJHeducationGJHeducation

Active transport

(1)
A whole lesson on the topic of active transport which includes a concise lesson presentation (20 slides) and a set of questions that are used to check on the students’ understanding. This lesson is designed for GCSE students (14 - 16 year olds in the UK) but could be used with A-level students who are covering the topic of movement across cell membranes. The main focus of the lesson is to get students to understand that this is an active process which moves substances against the concentration gradient and therefore needs energy for this process. The final part of the lesson looks at the different types of questions that can accompany this topic and a step-by-step guide is used to answer a difficult longer answer question as a class.
Sampling techniques
GJHeducationGJHeducation

Sampling techniques

(1)
A fully-resourced lesson that looks at the different sampling methods that can be used to estimate the populations of animals and plants in a habitat and to analyse how their distribution is affected, The lesson includes a detailed and engaging lesson presentation (56 slides) and differentiated worksheets so that students of different abilities are challenged and can access the work. The lesson begins by looking at the use of a quadrat to estimate the population of plants in a habitat. There is a focus on the mathematical calculations associated with the method and students are given hints and worked examples so that any common misconceptions are addressed. Moving forwards, students are introduced to the capture-mark-recapture technique to sample animals. The rest of the lesson looks at alternative pieces of apparatus, such as the sweep net, and discusses situations when these would be used. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but is appropriate for both younger students who are learning about ecology and also for A-level students who need a recap on this topic.
Structure of DNA - GCSE
GJHeducationGJHeducation

Structure of DNA - GCSE

(1)
A fully-resourced lesson which looks at the structure of DNA in the detail which is required at GCSE level (14 - 16 year olds in the UK). The lesson includes an engaging lesson presentation (35 slides) and associated worksheets. The main aim of the lesson is to ensure that students recognise key terminology that comes with this topic such as nucleotide and (nitrogenous) bases. Engaging tasks have been written into the lesson, in order to maintain the motivation, such as when students are introduced to complimentary base pairing through a version of the gameshow “Take me Out”. Additional knowledge is provided at appropriate times in the lesson to stretch and challenge the more able. There are regular progress checks throughout the lesson so that students can assess their understanding of the structure. As stated above, this lesson has been written for GCSE students but could be used with younger students and also with A-level students as a means of a recap before they learn about this in greater detail.
Blood clotting (GCSE)
GJHeducationGJHeducation

Blood clotting (GCSE)

(0)
A resourced lesson which uses a concise lesson presentation (18 slides) and a differentiated diagram to guide students through the method of blood clotting. This lesson has been designed for students studying GCSE (14 - 16 year olds in the UK) and this is reflected in the appropriate detail where only the involvement of fibrin needs to be known. Students are shown how blood clotting is a cascade effect where one event leads on to the next.
Significant figures (Maths in Science)
GJHeducationGJHeducation

Significant figures (Maths in Science)

(0)
A fully resourced lesson which includes an informative lesson presentation (25 slides) and an associated worksheet that show students how to give answers to a certain number of significant figures. The answers to questions in Science are often required to be given in significant figures and this lesson guides students through this process, including the rules of rounding that must be applied for success to be likely. This lesson has been designed for GCSE students but is suitable for KS3
Converting units (Maths in Science)
GJHeducationGJHeducation

Converting units (Maths in Science)

(0)
A fully resourced lesson which includes an informative lesson presentation (34 slides) and differentiated worksheets that show students how to convert between units so they are confident to carry out these conversions when required in Science questions. The conversions which are regularly seen at GCSE are covered as well as some more obscure ones which students have to be aware of. A number of quiz competitions are used throughout the lesson to maintain motivation and to allow the students to check their progress in an engaging way This lesson has been designed for GCSE students but is suitable for KS3
Formation of tissue fluid (OCR A-level Biology)
GJHeducationGJHeducation

Formation of tissue fluid (OCR A-level Biology)

(3)
This fully-resourced lesson explains how a combination of hydrostatic pressure and oncotic pressure results in the formation of tissue fluid from plasma. The detailed PowerPoint and accompanying resources have been designed to cover point 3.1.2 (d) of the OCR A-level Biology A specification and includes a section on the differences between blood, tissue fluid and lymph The lesson begins with an introduction to the arteriole and venule end of a capillary as these will need to be considered as separate entities when describing the formation of tissue fluid. A quick quiz competition introduces a value for the hydrostatic pressure at the arteriole end and students are challenged to first predict some parts of the blood will move out of the capillary as a result of the push from the hydrostatic pressure and this allows oncotic pressure to be initially explored. The main part of the lesson uses a step by step guide to describe how the net movement is outwards at the arteriole end before students will use this guidance to describe what happens at the venule end. In the concluding part of the lesson, students will come to recognise oedema as a condition where tissue fluid accumulates and they again are challenged to explain how this occurs before they finally learn how the fluid is returned to the circulatory system as lymph This lesson has been written to tie in with the other uploaded lessons from module 3.1.2 (Transport in animals)
The gross and fine anatomy of the kidney
GJHeducationGJHeducation

The gross and fine anatomy of the kidney

(1)
This lesson has been designed to act as an introduction to the anatomy of the kidney before students move on to study each structure of the nephron in more detail. The lesson considers both the gross anatomy, in terms of the renal cortex and medulla and then looks at the functional unit of the nephron. The function of the different parts of the nephron are briefly discussed and the features that relate to function are considered. This lesson has been designed for A-level students but could be used with higher ability GCSE students.
OCR A-level Biology Module 4 REVISION (Biodiversity, evolution and disease)
GJHeducationGJHeducation

OCR A-level Biology Module 4 REVISION (Biodiversity, evolution and disease)

(1)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within module 4 (Biodiversity, evolution and disease) of the OCR A-level Biology specification. The topics tested within this lesson include: Communicable diseases, biodiversity, classification and evolution Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
OCR A-level Biology Module 3 REVISION (Exchange and Transport)
GJHeducationGJHeducation

OCR A-level Biology Module 3 REVISION (Exchange and Transport)

(0)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within module 3 (Exchange and transport) of the OCR A-level Biology specification. The topics tested within this lesson include: Exchange surfaces Mammalian gaseous exchange system Tissues in the gaseous exchange system Transport in animals Blood vessels Exchange at the capillaries ECG Transport of oxygen Transport in plants Transport tissues Movement of water through plants Transpiration Translocation Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
OCR GCSE Biology Modules B1-B3 REVISION
GJHeducationGJHeducation

OCR GCSE Biology Modules B1-B3 REVISION

(0)
A fully resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within modules B1, B2 and B3 of the OCR Gateway A GCSE Biology specification as will be covered in Biology paper 1 The topics that are tested within the lesson include: Cell structures What happens in cells Respiration Photosynthesis Supplying the cell The challenge of size The nervous system The endocrine system Maintaining internal environments Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require further attention