Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Forming IONS
GJHeducationGJHeducation

Forming IONS

(0)
A fully-resourced lesson which explores how ions are formed from atoms. The lesson includes an engaging lesson presentation (33 slides) and an associated worksheet to be used during an understanding check. The first part of the lesson focuses on atoms and specifically on getting students to recall that they contains the same number of protons and electrons and this is why they have no charge. By ensuring that they are confident with this fact, they will be able to understand why ions have a charge. Students will learn that ions have full outer shells of electrons and this change in the number of this sub-atomic particle leads to the charge. They are shown examples with aluminium and oxygen and then challenged to apply this new-found knowledge to a task where they have to explain how group 1, 2, 5 and 7 atoms become ions. The final part of the lesson looks at how ion knowledge can be assessed in a question as they have to recognise the electron configuration of one and describe how many sub-atomic particles are found in different examples. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but could be used with higher ability KS3 students who are looking to extend their knowledge past basic atomic structure
CRACKING hydrocarbons
GJHeducationGJHeducation

CRACKING hydrocarbons

(0)
A fully-resourced lesson which looks at the chemical reaction of cracking and the conditions that are needed for this reaction on both an industrial scale and in a laboratory. The lesson includes an engaging lesson presentation (33 slides) and an associated worksheet containing questions for a progress check. The lesson begins by challenging the students to use their knowledge of alkanes and a given example to work out the name of a 6, 7 and 8 carbon alkane. Students need to be able to name the alkanes and alkenes in order to understand the products of a cracking reaction. A number of quiz competitions are used to introduce both the name of the reaction but also the temperature that is needed when it is carried out on an industrial scale. Students will then be shown a diagram of a cracking experiment in a laboratory so they can discover that a catalyst is also needed. Students will learn, either through carrying out the experiment or through the informative slide, that the product of a cracking reaction is a smaller alkane molecule and a smaller alkene molecule. Time is taken to go back over the meaning of saturated and unsaturated and once the students have been introduced to bromine water, they are challenged to work out what the respective reactions will be when it is added to an alkane and an alkene. The remainder of the lesson focuses on writing word and chemical symbol equations for a cracking reaction. Students will be shown how the second product of a reaction can be worked out when the reactant and first product are provided and then they challenge themselves by trying to write three equations. Understanding checks are written into the lesson at regular places to allow the students to check on their understanding. This lesson has been designed for GCSE students.
Development of the ATOM
GJHeducationGJHeducation

Development of the ATOM

(0)
An informative lesson presentation (44 slides) that looks at the work of the key Scientists involved in the development of the atomic model. Dalton, Thomson, Rutherford and Bohr were four men whose work has led to the changes in the atomic model over the years and this lesson looks at parts of each of their work. There is a focus on Rutherford’s work with the alpha particles and students are challenged to draw conclusions based on the deflections they are shown. There is lots of time written into the lesson for consolidation and regular progress checks ensure that students have the opportunity to assess their understanding. This lesson has been written for GCSE students but could be used with KS3 students who perhaps are carrying out a project on the atom and want to add detail to their work
State symbols
GJHeducationGJHeducation

State symbols

(0)
A quick and fun lesson which goes through the accurate addition of state symbols to balanced symbol equations. The aim of this lesson is to give students quick and easy ways to recognise the state of matter of a reactant or product whilst being engaged trough the format of the lesson. A number of quick quiz competitions are used in the lesson, either to introduce a new term of to act as a fun understanding check. First of all, students will use their Chemistry knowledge to come up with the fourth symbol, aq, which is commonly forgotten. Moving forwards, a worked example is used to guide the students through adding the state symbols. A visual of the experiment is shown in a video but could be done as a demonstration to help the students further. Finally, the students are challenged to apply their new-found knowledge and write a fully balanced symbol equation with state symbols. An assistance sheet is available for those who need a little push. This lesson has been designed for GCSE students
Pure and impure substances
GJHeducationGJHeducation

Pure and impure substances

(0)
An engaging lesson presentation (39 slides) with associated differentiated worksheets that looks at they key differences between pure and impure substances and briefly explores how a mixture like an alloy can still be very useful. The lesson begins by challenging the students to recognise 4 diagrams of pure substances from a selection of 5. This will lead students to the definition of pure (in Science) which is likely to be different to what they have encountered in everyday language. The next task gets the students to draw a graph showing the melting and boiling points of pure water. This will enable them to compare the melting point against that of an impure substance and therefore recognise that this difference can be used as point to decide on purity. An example of gritting is used to explain how this change in melting point can be utilised and then the students are challenged to apply this new-found knowledge to the situation of adding salt to boiling water when making pasta. The remainder of the lesson focuses on some famous mixtures. Beginning with air, students will be able to visualise how this mixture is made of a number of gases, each with different boiling points which allows them to be separated by fractional distillation. Alloys are briefly explored so that students know why these mixtures are used for certain functions over pure metals and the summary passage for this task has been differentiated two ways so that all can access the work. Progress checks have been written into the lesson at regular intervals so that students can check their understanding and a range of quick quiz competitions are used to maintain engagement whilst introducing new terms in a fun manner. If you want to look into alloys in greater detail, then this lesson could be combined with the one named “alloys” which is also uploaded.
Alloys
GJHeducationGJHeducation

Alloys

(0)
A fully-resourced lesson which explores how the composition of different alloys is related to their properties and their uses. The lesson includes an engaging and informative lesson presentation (38 slides) and an associated differentiated worksheet. The lesson begins by challenging the students to use their Chemistry knowledge of numbers to come up with the letters of the word alloy. Students are introduced to the definition of this key term and then use a wordsearch to find both the names of the alloys but also the metals that are found in these mixtures. The main aim of this lesson is to get students to understand why alloys are chosen for jobs rather than pure metals and there is a focus on atoms and their arrangement. Students are challenged to use the example of copper and brass to complete a summary passage which is differentiated so that those who need more assistance are still able to access the work. The remainder of the lesson focuses on steel and solder, again exploring how their different features are related to how they are used in modern day life. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding and a range of quick quiz competitions will aid engagement. This lesson has been designed for GCSE students but could be used with KS3 students who are looking at mixtures within the atoms and elements topic.
Catalysts and the rate of reaction
GJHeducationGJHeducation

Catalysts and the rate of reaction

(0)
A concise lesson presentation (22 slides) that looks at how catalysts affect the rate of a chemical reaction and focuses on the Science behind this topic. The lesson begins with the introduction of the key term and its definition to ensure that students are confident in the use of a catalyst in the correct context. More key terms like “activation energy” are introduced and links made to related Chemistry topics such as endothermic and exothermic reactions. Students are challenged to show how the activation energy will differ in the presence of a catalyst. The rest of the lesson involves a practical and the collection of results so that students can compare their data against the theory which was introduced earlier in the lesson. This lesson has been designed for GCSE students.
Rates of reaction
GJHeducationGJHeducation

Rates of reaction

(0)
A fully-resourced lesson which looks at the meaning of the rate of reaction and guides students through calculating both the mean and instantaneous rate of reaction. The lesson includes a concise lesson presentation (19 slides) and a question worksheet which is differentiated two ways. The lesson begins by challenging the students to suggest the missing factor in the rate of reaction equation so they can learn that either the mass of a reactant or a mass of a product could be used. Links are made to practical skills as students will understand that if a product is in the gaseous form, the volume produced within a set time will enable the rate to be calculated. Worked examples are used to show the students how to calculate the mean rate of reaction and then the instantaneous using a tangent. The rest of the lesson involves collecting data from an experiment to calculate the rate of reaction. The questions associated with the practical have been differentiated so students who need assistance can still access the learning. This lesson has been written for GCSE students
Reactions of acids
GJHeducationGJHeducation

Reactions of acids

(0)
A fully-resourced lesson that looks at the reaction of an acid with a metal or a metal carbonate and guides students through writing word and symbol equations to represent these reactions. This lesson includes a lesson presentation (39 slides) and differentiated worksheets. The lesson begins by challenging the students to spot a pattern when naming the salts that are produced from these reactions. Students are shown how the second word of the salt’s name depends upon the particular acid involved in the reaction and are given opportunities to watch this in worked examples before applying their knowledge to a question. Students will also meet the general formula for the reaction of an acid with a metal carbonate. Moving forwards, a step by step guide is used to show the students how to write fully balanced symbol equations. Time is taken to specifically show them how to write accurate chemical formulae, including those which involve a bracket as is common in this topic. The final task challenges the students to bring all of this information together to write word and symbol equations for three reactions. This worksheet is differentiated two ways so students who require some assistance can still access the work. This lesson has been written for GCSE students (14 - 16 year olds in the UK)
Temperature and the position of equilibrium
GJHeducationGJHeducation

Temperature and the position of equilibrium

(0)
This lesson explores how the temperature affects the position of equilibrium in a reversible reaction. This can be a difficult topic for students to understand and therefore the aim has been on the key details. The lesson begins by challenging the students to recall the rules of a dynamic equilibrium in order to recognise how if the equilibrium position changes then so do the concentrations. Links are made during the lesson to related topics such as endothermic and exothermic reactions and some time is taken to go back over calculating energy changes so that the type of reaction can be determined. The forward reaction in the Haber process is used as the example so students can see how an increase in temperature in this exothermic reaction would lead to a decrease in the yield of ammonia. Students are then challenged to use this example to explain how a decrease in temperature would affect the production of methanol. This worksheet is differentiated so students who need extra assistance can still access the learning. This lesson has been written for GCSE students.
Pressure and the position of the equilibrium
GJHeducationGJHeducation

Pressure and the position of the equilibrium

(0)
This concise lesson presentation (20 slides) guides students through the effect of changing pressure on the position of the equilibrium. The key skill to this topic involves recalling the rule of increasing pressure and being able to recognise how many moles are on each side of the reaction. For this reason, time is taken to remind the students of the meaning of the mole numbers in a reaction and working through an example together so they can see which side will be favoured. The final part of the lesson involves a game called “The PRESSURE is on” where students are in a race against the clock to balance an equation and then work out which way the equilibrium will shift when either the pressure is increased or decreased. This lesson has been written for GCSE students.
Reversible reactions
GJHeducationGJHeducation

Reversible reactions

(0)
This lesson has been written for GCSE students, with the main focus being to introduce reversible reactions, show them how to represent them in both word and symbol equations, and to look at some well-known examples. Related topics such as the position of the equilibrium and endothermic and exothermic reactions are briefly mentioned so that students can recognise the potential crossover between topics. Some time is taken during the lesson to challenge the students to write a balanced symbol equation having been given a description of a reversible reaction. This task is differentiated with an assistance sheet so that all are able to access the learning. There are a number of these progress checks in this short lesson so that students can assess their understanding on a regular basis. Students will learn that the reaction in one direction will be exothermic and why this matters in terms of temperature and the equilibrium position. Increasing pressure and the number of moles is also discussed and an answer explained.
Atom economy
GJHeducationGJHeducation

Atom economy

(0)
This is a concise, fast-paced lesson which guides students through the critical skills needed to calculate the atom economy of a chemical reaction. It has been designed for GCSE students and focuses on the calculation as well as interpreting the final value. In order to calculate the mass of the desired product and other products, students have to be able to calculate the relative formula mass - therefore time is taken to revisit these skills and worked examples are used with this and the actual calculations to enable the students to visualise how they should set their work out. The lesson finishes with some progress check questions where students are challenged to state which of four chemical reactions has the highest atom economy. This lesson could be taught in combination with the percentage yield topic and an accompanying lesson on that calculation is available on this site.
Topic C9: Separate Chemistry 2 (Edexcel GCSE Chemistry)
GJHeducationGJHeducation

Topic C9: Separate Chemistry 2 (Edexcel GCSE Chemistry)

10 Resources
This bundle of 7 lessons covers the majority of the content in Topic C9 (Separate Chemistry 2) of the Edexcel GCSE Chemistry specification. The topics covered within these lessons include: Detecting cations Detecting anions Alkanes as saturated hydrocarbons Alkenes as unsaturated hydrocarbons Testing with bromine water Complete combustion of hydrocarbons Polymers Biological polymers Alcohols Carboxylic acids Production of ethanol Nanoparticles All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P6:  Radioactivity (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic P6: Radioactivity (Edexcel GCSE Combined Science)

7 Resources
This bundle of 7 lessons covers a lot of the content in Topic P6 (Radioactivity) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: The atom Isotopes Background radiation Alpha, beta and gamma radiation Nuclear decay equations The unit of radioactivity Half-life The dangers of ionising radiation The differences between irradiation and contamination All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
OCR GCSE Combined Science PAPERS 1 - 6 REVISION LESSONS
GJHeducationGJHeducation

OCR GCSE Combined Science PAPERS 1 - 6 REVISION LESSONS

6 Resources
This bundle of 6 revision lessons covers the content that can be assessed across the 6 papers that students will be required to take as part of the OCR Gateway A GCSE Combined Science qualification. The 6 papers and respective topics are: Paper 1 (Biology) J250/01 Cell-level systems Scaling up Organism level systems Paper 2 (Biology) J250/02 Community level systems Interaction between systems Global challenges Paper 3 (Chemistry) J250/03 Particles Elements, compounds and mixtures Chemical reactions Paper 4 (Chemistry) J250/04 Predicting and identifying reactions and products Monitoring and controlling chemical reactions Global challenges Paper 5 (Physics) J250/05 Matter Forces Electricity and magnetism Paper 6 (Physics) J250/06 Waves and radioactivity Energy Global challenges All of the lessons have been written to engage and motivate the students whilst they evaluate their understanding of the different papers
Maths in AQA GCSE Combined Science REVISION
GJHeducationGJHeducation

Maths in AQA GCSE Combined Science REVISION

(0)
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the AQA GCSE Combined Science papers. The mathematical element of the AQA GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more. The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “YOU DO THE MATH” and “FILL THE VOID”. The following mathematical skills (in a scientific context) are covered in this lesson: The use of Avogadro’s constant Rearranging the formula of an equation Calculating the amount in moles using mass and relative formula mass Calculating the relative formula mass for formulae with brackets Using the Periodic Table to calculate the number of sub-atomic particles in atoms Changes to electrons in ions Balancing chemical symbol equations Converting between units Calculating concentration in grams per dm cubed and volumes of solutions Calculating size using the magnification equation Using the mean to estimate the population of a sessile species Calculating percentages to prove the importance of biodiversity Calculating percentage change Calculating the acceleration from a velocity-time graph Recalling and applying the Physics equations Understanding prefixes that determine size Leaving answers to significant figures and using standard form Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance. Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision.
Maths in GCSE Science REVISION (OCR Gateway A)
GJHeducationGJHeducation

Maths in GCSE Science REVISION (OCR Gateway A)

(0)
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the six OCR Gateway A GCSE Combined Science papers. The mathematical element of the GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more. The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “It doesn’t HURT to CONVERT”, “YOU DO THE MATH” and “FILL THE VOID”. The following mathematical skills (in a scientific context) are covered in this lesson: The use of Avogadro’s constant Rearranging the formula of an equation Calculating the amount in moles using mass and relative formula mass Calculating the relative formula mass for formulae with brackets Using the Periodic Table to calculate the number of sub-atomic particles in atoms Changes to electrons in ions Balancing chemical symbol equations Empirical formula Converting between units Calculating concentration in grams per dm cubed and volumes of solutions Calculating size using the magnification equation Using the mean to estimate the population of a sessile species Calculating percentages to prove the importance of biodiversity Calculating percentage change The BMI equation Calculating the acceleration from a velocity-time graph Recalling and applying the Physics equations Understanding prefixes that determine size Leaving answers to significant figures and using standard form Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance. Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision
PAPER 3 FT REVISION (Edexcel Combined Science FOUNDATION TIER)
GJHeducationGJHeducation

PAPER 3 FT REVISION (Edexcel Combined Science FOUNDATION TIER)

(0)
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of the content in topics C1 - C4, that will assessed on PAPER 3. It has been specifically designed for students on the Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to cover as many sub-topics as possible, but the following have been given particular attention: The relative mass and charge of protons, electrons and neutrons Using the Periodic table to calculate numbers of the sub-atomic particles Writing elements and compounds in chemical symbol equations Simple and giant covalent structures Explaining the difference in conductivity of graphite and diamond Drawing dot and cross diagrams for ionic compounds The transfer of electrons during the formation of an ionic bond Writing chemical formulae for ionic compounds Conservation of mass and balancing symbol equations Calculating the relative formula mass Electrolysis of molten salts and aqueous solutions Extraction of metals In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as drawing dot and cross diagrams, diamond and graphite and writing chemical formulae. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3/4 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 3 exam.
Maths in OCR GCSE Chemistry REVISION
GJHeducationGJHeducation

Maths in OCR GCSE Chemistry REVISION

(0)
This fully-resourced lesson has been written to prepare students for the range of mathematical-based questions that they may face on the two OCR GCSE Chemistry papers. The lesson has been designed to contain a wide range of activities which includes 8 quiz competition rounds spread across the duration of the lesson to maintain engagement whilst the students assess their understanding. The mathematical skills covered in this lesson include: Calculating the number of sub-atomic particles in atoms and ions Writing chemical formulae for ionic compounds Identifying isotopes Using Avogadro’s constant to calculate the number of particles Calculating the relative formula mass Calculating amount in moles using the mass and the relative formula mass Balancing chemical symbol equations Calculating reacting masses Gas calculations using molar volume Calculating concentration of solutions Titration calculations Deducing the empirical formula Calculating energy changes in reactions Most of the resources have been differentiated two ways to allow students of differing abilities to access the work whilst still being challenged. In addition, step by step guides are used to demonstrate how to carry out some of the more difficult calculations such as the harder mole calculations and calculating masses in reactions This lesson could be used with higher ability students on the OCR GCSE Combined Science course by taking out the sections which are not applicable.