Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Nanoparticles
GJHeducationGJHeducation

Nanoparticles

(0)
An informative lesson presentation (24 slides) that looks at the relative size of the nanoparticles and explains why they are so effective for a range of purposes. The lesson begins by looking at exactly how small nanoparticles are and ensures that students can recognise this size in a range of ways, including standard form. Moving forwards, in order to help students to understand why these nanoparticles are being used in a lot of different ways, students are introduced to bulk materials. Included in the remainder of the lesson is calculating the surface area to volume ratio so this can be used as a comparison point. There are regular progress checks throughout the lesson so that students can assess their understanding. This lesson has been written for GCSE students.
Fractional distillation of crude oil
GJHeducationGJHeducation

Fractional distillation of crude oil

(0)
An engaging lesson presentation (46 slides) which looks at the fractional distillation of crude oil and focuses on the properties of the different fractions. The aim at the start of the lesson is to ensure that students understand that this process can be broken down into evaporation followed by condensation. Moving forwards, a fun competition is used to introduce the students to the names of some of the important fractions that are produced by this process. At the same time, they will learn the relative position that each fraction condenses on the fractionating column and will be taught that they need to know this position with relation to the other fractions. Students will learn that the fractions have differing properties depending on where they condense and they are challenged to compare fractions by viscosity, length of hydrocarbon and boiling point. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students.
Formulae of ionic compounds
GJHeducationGJHeducation

Formulae of ionic compounds

(0)
An engaging and informative lesson presentation (43 slides) that shows students how to write accurate chemical formulae for ionic compounds. In order to write accurate chemical formulae, students need to know the charges of the ions involved. For this reason, the lesson begins by reminding students how they can use the Periodic Table to work out the charge of the charged atoms. Students are shown how they can use these ion charges to write the formula and then are given the opportunity to apply this to a number of examples. Moving forwards, students are shown how some formulae need to contain brackets. The lesson finishes with a competition called “Ye Olde Chemical Formula Shop” where students get points if they are the first to work out the formula of a given substance. This lesson has been written for GCSE students.
Biological polymers
GJHeducationGJHeducation

Biological polymers

(0)
A resourced lesson which looks at a number of examples of biological polymers. The lesson includes an engaging lesson presentation (40 slides) and a couple of worksheets to be used in the understanding check task. The starter activity challenges the students to use their Chemistry knowledge to come up with the abbreviation DNA. They will learn the key details of this polynucleotide and then time and focus is given to the nitrogenous bases and how they bond between the two strands. Moving forwards, students will be shown the next biological polymer that is a polypeptide. They are briefly shown how to draw a block diagram to represent the chain of amino acids. The final polymer are carbohydrates and students will learn how glycogen, starch and cellulose are formed from glucose monomers. Regular progress checks are written into the lesson at regular intervals to allow the students to check their understanding and ask questions. This lesson has been written for GCSE students
Extracting IRON
GJHeducationGJHeducation

Extracting IRON

(0)
An engaging lesson presentation (33 slides) which walks students through the main steps in the extraction of iron from its ore. The lesson begins by challenging the students to recall the reactivity series of metals and specifically the position of iron in relation to carbon so they recognise that it can be extracted by reduction with carbon. Key skills from other Chemistry topics are tested during the lesson such as writing chemical formulae and redox reactions. The rest of the lesson involves a step-by-step guide where students are given a passage and a symbol equation with something missing which they have to complete. This task ensures that students recognise the products, formulae and state symbols at each stage. A number of quiz competitions are used during the lesson to maintain engagement and progress checks have been written into the lesson at regular intervals so that students can assess their understanding. This lesson has been written for GCSE students and fits in nicely with other resources that are uploaded (extracting metals and extracting aluminium).
Detecting ANIONS
GJHeducationGJHeducation

Detecting ANIONS

(0)
An engaging and practical based lesson presentation (24 slides) which challenges the students to carry out a range of practical tasks to learn the identification tests and positive results for the anions. The lesson begins by challenging the students to use their prior knowledge of chemical formulae to name two sets of ions. Students will be reminded of the definition of a cation so they can use this to write an accurate one for the anions. The rest of the lesson looks at the different tests and time is taken to explain the details behind each of them. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding. A set homework has also been included. This lesson has been written for GCSE students.
Concentration and the rate of reaction
GJHeducationGJHeducation

Concentration and the rate of reaction

(0)
A fully-resourced lesson which looks at the chemical reaction that is aerobic respiration and ensures that students can apply their knowledge to application questions which challenge them to make links to related topics. The lesson includes a practical-based lesson presentation (19 slides) and associated worksheets containing differentiated questions. The aim of the beginning of the lesson involves getting students to understand the term, concentration, so that they are able to use it accurately in their descriptions. This is a term which is commonly wrongly used by students. Moving forwards, students will carry out a practical to collect valid results so that they can apply their knowledge of concentration to explain a trend. Certain practical skills are challenged during the lesson such as the drawing of a results table to display the results. A worksheet containing questions on the practical is differentiated so that students who need assistance are still able to access the learning. This lesson has been designed for GCSE students but can be used with KS3 students who are learning about chemical reactions.
Bond energy calculations
GJHeducationGJHeducation

Bond energy calculations

(0)
An informative lesson presentation (24 slides), accompanied by a set of differentiated question worksheets, which together guide students through calculating energy changes in reactions and then challenges them to apply their new-found knowledge. The lesson begins by asking the students to complete a sentence which details how energy is taken in to break bonds in the reactants and given out when bonds are formed in the products. The bond energy table is then introduced so that students understand how it will be used in questions. Moving forwards, a step by step guide is used to calculate the energy change value for two reactions and students are shown how to interpret the positive or negative result as endothermic or exothermic respectively. The remainder of the lesson asks the students to apply what they have learnt to calculate the energy change for two more reactions. This question worksheet is differentiated two ways so that students who need extra assistance can still access the work. This lesson has been designed for GCSE students
Neutralisation reactions
GJHeducationGJHeducation

Neutralisation reactions

(0)
A lesson presentation (44 slides), accompanied by a question worksheet, which together looks at the reactants and products of a neutralisation reaction and challenges students to represent these reactions with equations. The lesson begins with a bit of fun as students are asked to read through a scene from the US comedy show and spot that a neutralisation reaction is hidden under the jokes. Students will use their KS3 knowledge to recall that these reactions involve acids and alkalis and moving forwards they will be introduced to a new term, base. The rest of the lesson focuses on writing word and balanced symbol equations for different neutralisation reactions. A step by step guide is used to demonstrate how to work out the name of the salt as well as writing accurate chemical formulae. Finally, students are challenged to apply their new-found knowledge and complete equations for 4 neutralisation reactions and they can assess against the displayed mark schemes. Progress checks have been written into the lesson at regular intervals so that this self-assessment is constant and any misconceptions are quickly addressed. This lesson has been written for GCSE students but could be used with younger students who are looking to extend their knowledge
Temperature and the rate of reaction
GJHeducationGJHeducation

Temperature and the rate of reaction

(0)
A practical based lesson presentation (26 slides) that investigates how increasing the temperature affects the rate of reaction and helps students to explain the trend in the results. Students can either carry out the reaction between sodium thiosulphate and hydrochloric acid or use the results which are provided. The equation to work out the rate of reaction is introduced to the students and they are challenged to plot the results on a line graph. A key term to be used in the explanation is introduced through a quick competition and then students are challenged to explain the trend
Reactivity series of metals
GJHeducationGJHeducation

Reactivity series of metals

(0)
An engaging, practical-based lesson presentation (34 slides), accompanied by an assistance sheet, which together look at how the results of displacement reactions can be used to order the metals into the reactivity series. The lesson begins by introducing a displacement reaction and ensuring that students understand the meaning of this term and how it relates to the topic of the lesson. Students will carry out a series of 12 displacement reactions, involving 4 different metals and will then be challenged to interpret the results to place the metals into their allocated positions in the series. Moving forwards, the students are given the results of more reactions, some which occurred and others which didn’t so they can place the remaining metals into the reactivity series. Time is also taken to understand how the position of hydrogen in the series can be used to predict the results of reactions between metals and acids. This lesson has been written for GCSE students but could be used with higher ability KS3 students
Atomic structure
GJHeducationGJHeducation

Atomic structure

(0)
A concise lesson presentation (27 slides) that looks at the key details of the sub-atomic particles and briefly explores how the atomic and mass numbers of the Periodic Table can be used to calculate the numbers of these particles in different atoms. The lesson begins with a Mathematical link as students are challenged to convert the size of an atom from standard form into a real number. Moving forwards, students will meet the three sub-atomic particles and be asked to predict which one is positive, neutral and negative in charge. The relative mass of a proton is shown and then students are asked to work out the mass of a neutron and an electron by observing some experimental results with a scales. Finally, the students are shown how to use the atomic number to work out the number of protons (and electrons) in an atom and how to work out the number of neutrons. This lesson has been designed to act as a knowledge recall and top-up as this should have already been learnt at KS3.
Isotopes
GJHeducationGJHeducation

Isotopes

(0)
A quick, concise lesson presentation (15 slides) which together with a question worksheet focuses on ensuring that students can define an isotope and pick these substances out from a selection of substances. The lesson begins by looking at the number of sub-atomic particles in an aluminium atom so that students can recall what is shown by the atomic and mass numbers. This will enable students to calculate the number of protons, neutrons and electrons in three given isotopes and as a result, complete a definition of these substances. The remainder of this short lesson involves 4 application questions where students either have to recognise isotopes from a table or from a diagram and also are asked to write out the formula of an isotope. Ideally this lesson will be taught in conjunction with a lesson on atomic structure.
Carboxylic acids
GJHeducationGJHeducation

Carboxylic acids

(0)
This lesson presentation looks at the carboxylic acids and focuses on the names, displayed formula, chemical formulae and reactions of this homologous series. The lesson begins with a bit of fun which gets enables the students to recognise that the functional group is COOH. A step by step guide is used to show the students how to draw the displayed formula for ethanoic acid, using the functional group before they apply their knowledge to draw the remaining acids in the first four. This series are connected by a general formula and students are shown how it is worked out for the alkanes and the alkenes so that students can work it out for the acids. Moving forwards, the reactions of these acids is shown and related to the reactions of acids that was previously learnt. Students will recall how to write the name of the salt and the balanced symbol equation. This lesson has been written for GCSE students
Topic C3: Chemical reactions (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic C3: Chemical reactions (OCR Gateway A GCSE Combined Science)

18 Resources
This bundle of 18 lessons covers all of the content in Topic C3 (Chemical reactions) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Conservation of mass Writing word and symbol equations Writing ionic equations The mole Mole calculations Calculating masses Concentrations Endothermic and exothermic reactions Bond energy calculations Making salts Reactions of acids Oxidation and reduction reactions Electrolysis Writing half equations for electrolysis Detecting gases All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C4: Predicting and identifying reactions and products (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic C4: Predicting and identifying reactions and products (OCR Gateway A GCSE Combined Science)

4 Resources
This bundle of 4 lessons covers the majority of the content in Topic C4 (Predicting and identifying reactions and products) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: The alkali metals The halogens Displacement reactions of the halogens The Noble gases Reactivity of metals and the reactivity series All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding. It is estimated that this bundle would cover about 2 week’s worth of lessons.
Distillation
GJHeducationGJHeducation

Distillation

(0)
A fast-paced, engaging lesson that looks at the separation method of distillation and focuses on the use of key terminology in the correct context. This lesson has been designed for GCSE students but teachers could use it with KS3 students who are looking at the mixtures topic. The lesson begins by challenging the students to state which mixture from a choice of three could be separated by distillation. A lot of the key terms involved in this lesson and the separation topic as a whole begin with S and are often incorrectly used. Therefore some time is taken to ensure that the students know the difference between a solution, solute and solvent and can pick out the substances which would apply to each of these terms in different examples. Students will learn how distillation involves evaporation followed by condensation and the next task gets students to compare boiling points to understand how the difference in these points allows the separation to occur and will also recognise that distillation results in two substances at the end as opposed to the one in crystallisation. The remainder of the lesson challenges students to apply their knowledge to two understanding checks - a summary passage on distillation and then a description of how ethanol and water are separated.
Elements
GJHeducationGJHeducation

Elements

(0)
This is an engaging lesson which uses a range of tasks and quiz competitions to ensure that the important details about elements are embedded so that students can use them in related Chemistry topics. The lesson begins by looking at the chemical symbols that are used with the elements. Students do not have to know the symbols off by heart because of the widely available Periodic Table but a sound knowledge will always help going forward. Time is taken to ensure that students understand how the symbols have to be written so that those with two letters consist of a capital and a lower case letter. In a race against each other, students are challenged to complete a crossword by converting symbols to the name of elements. This will result in a winner, a second placed and a third placed student who can be given a gold, silver and bronze medal. The atoms within each of these medals is explored so that students can learn that the gold and silver medals will only be made up of one type of atom and are therefore elements whilst the bronze is an alloy. The remainder of the lesson looks at some of the uses of the different elements and a homework task gets students to put this into written form. This lesson is suitable for both KS3 and GCSE students.
Conservation of mass
GJHeducationGJHeducation

Conservation of mass

(0)
This is a fully-resourced lesson, designed for GCSE students, that lteaches students how to prove that mass is conserved in a chemical reaction and guides them in the explanation of why some reactions do not give equal masses when measured. The lesson begins by introducing the law of the conservation of mass. Students will learn that they can expect questions which challenge them to prove that mass is conserved through the use of the relative formula mass. Therefore, the next section of the lesson focuses on the skills associated with this calculation and looks at more different formulae such as those with brackets. Students are given an opportunity to check their skills before trying to prove mass is conserved in three chemical reactions. All questions have displayed mark schemes so that students can assess their understanding. The rest of the lesson looks at instances of when the mass of the reactants does not equal the mass of the products. A practical method for the decomposition of copper carbonate is provided if the teacher wants to use it, so that students can collect results which show this difference in mass. Discussions are encouraged in order to get students to offer explanations as to why the mass of the products is lower. Once the gas has been identified, students are further challenged to consider apparatus that could be used to collect and record the results to again prove conservation.
Relative formula mass
GJHeducationGJHeducation

Relative formula mass

(0)
A fully-resourced lesson that uses a range of tasks, understanding checks and quick competitions to guide students through calculating the relative formula mass for substances with a range of chemical formulae. The relative formula mass is required in a lot of calculations, such as those that involve moles, so it is an important skill to get right. Worked examples are used throughout the lesson to visualise the metho for the students. Initially, students will learn how to calculate the mass from simple formulae before helpful hints are provided for harder formulae such as those that contain a bracket. Students are given the chance to apply their knowledge by proving that mass is conserved in a reaction. This lesson has been written for GCSE students but could be used with higher ability KS3 students in lessons that are looking to push knowledge forward