Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1135k+Views

1937k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Testing for proteins, sugars, starch and lipids (OCR A-level Biology)
GJHeducationGJHeducation

Testing for proteins, sugars, starch and lipids (OCR A-level Biology)

(0)
This lesson describes the chemical tests for proteins, reducing and non-reducing sugars, starch and lipids and explains how to interpret the results. The PowerPoint and accompanying resource have been designed to cover point 2.1.2 (q) of the OCR A-level Biology A specification. The lesson begins with an explanation of the difference between a qualitative and quantitative test so that the students recognise that the four tests described within this lesson indicate the presence of a substance but not how much. The students are likely to have met these tests at GCSE so this lesson has been planned to build on that knowledge and to add the knowledge needed at this level. A step by step guide walks the students through each stage of the tests for reducing and non-reducing sugars and application of knowledge questions and prior knowledge checks are included at appropriate points to ensure understanding is complete. Time is also taken to ensure that students understand the Science behind the results. The next part of the lesson focuses on the iodine test for starch and the students will learn that the colour change is the result of the movement of an ion into the amylose helix. The rest of the lesson describes the steps in the biuret test for proteins and the emulsion test for lipids. The students will learn that the addition of sodium hydroxide and then copper sulphate will result in a colour change from light blue to lilac if a protein is present and that following the addition of a sample to ethanol and then water, a cloudy emulsion is observed if a lipid is present.
Filtration and crystallisation
GJHeducationGJHeducation

Filtration and crystallisation

(0)
This is an engaging and practical-based lesson which uses the background idea of a man needing to make crystals for a date to engage students into understanding how the separation methods of filtration and crystallisation work. Like all of the lessons in the separation topic, a lot of the key terms sound similar and are often wrongly used by students. For this reason, time is given in the lesson to ensure that students can use them correctly, especially when describing filtration. In line with the background of the lesson, students are challenged to come up with the apparatus and substances needed to make the crystals. A method is provided so should the teacher choose, students will be able to carry out the practical and produce the copper sulphate crystals. Progress checks are written into the lesson at regular intervals, which question the students on this lesson topic and that of related ones and the final task of the lesson involves an exam question where students have to describe the method and equipment needed to make crystals. This lesson has primarily been written for GCSE students (14 - 16 years in the UK) but is appropriate for younger students who are studying the separation topic
Cambridge IGCSE Chemistry Topic 5 REVISION (Electricity and Chemistry)
GJHeducationGJHeducation

Cambridge IGCSE Chemistry Topic 5 REVISION (Electricity and Chemistry)

(0)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 5 (Electricity and Chemistry) of the Cambridge IGCSE Chemistry (0620) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers. The specification points that are covered in this revision lesson include: CORE Define electrolysis as the breakdown of an ionic compound, molten or in aqueous solution, by the passage of electricity Describe the electrode products and the observations made during the electrolysis of a range of electrolytes State the general principle that metals or hydrogen are formed at the negative electrode (cathode), and that non-metals (other than hydrogen) are formed at the positive electrode (anode) Predict the products of the electrolysis of a specified binary compound in the molten state Describe the reasons for the use of copper and (steel-cored) aluminium in cables, SUPPLEMENT Relate the products of electrolysis to the electrolyte and electrodes used Describe electrolysis in terms of the ions present and reactions at the electrodes in the examples given Predict the products of electrolysis of a specified halide in dilute or concentrated aqueous solution Construct ionic half-equations for reactions at the cathode Describe, in outline, the manufacture of aluminium from pure aluminium oxide in molten cryolite and chlorine, hydrogen and sodium hydroxide from concentrated aqueous sodium chloride The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Have you got the SOLUTION” where they have to compete to be the 1st to name the products at the electrodes whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
CIE IGCSE Chemistry Topic 14 REVISION (Organic chemistry)
GJHeducationGJHeducation

CIE IGCSE Chemistry Topic 14 REVISION (Organic chemistry)

(0)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 14 (Organic chemistry) of the CIE IGCSE Chemistry (0620) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers. The specification points that are covered in this revision lesson include: CORE Name and draw the structures of methane, ethane, ethene, ethanol, ethanoic acid and the products of their reactions State the type of compound present, given a chemical name ending in -ane, -ene, -ol, or -oic acid or a molecular structure Describe petroleum as a mixture of hydrocarbons and its separation into useful fractions by fractional distillation Describe the properties of molecules within a fraction Describe the concept of homologous series as a ‘family’ of similar compounds with similar chemical properties due to the presence of the same functional group Describe the properties of alkanes Describe the bonding in alkanes Describe the manufacture of alkenes and of hydrogen by cracking Distinguish between saturated and unsaturated hydrocarbons: Define polymers as large molecules built up from small units (monomers) SUPPLEMENT Name and draw the structures of the unbranched alkanes, alkenes (not cis-trans), alcohols and acids containing up to four carbon atoms per molecule Name and draw the structural formulae of the esters which can be made from unbranched alcohols and carboxylic acids, each containing up to four carbon atoms Recall that the compounds in a homologous series have the same general formula Understand that different polymers have different units and/or different linkages Describe the structure of proteins The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Are you on FORM” where they compete to be the 1st to name an organic compound from its formula whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
Calculating masses in reactions
GJHeducationGJHeducation

Calculating masses in reactions

(0)
A fully-resourced lesson which guides students through using moles to calculate the mass of a substance in a reaction. The lesson includes a detailed lesson presentation (22 slides) and associated worksheets which are used to check the skills and understanding of the students. The lesson begins by introducing the students to the three steps involved in a calculating mass question. These skills include calculating the relative formula mass and identifying molar ratios in equations to calculate amounts so time is taken to recap on how this is done before students are given the opportunity to try some progress check questions. A worked example brings these three steps together to guide the students to the final answer. The final task involves 4 questions where students are challenged to apply their new-found knowledge. This lesson has been written for GCSE students (14 - 16 year olds in the UK)
CRACKING hydrocarbons
GJHeducationGJHeducation

CRACKING hydrocarbons

(0)
A fully-resourced lesson which looks at the chemical reaction of cracking and the conditions that are needed for this reaction on both an industrial scale and in a laboratory. The lesson includes an engaging lesson presentation (33 slides) and an associated worksheet containing questions for a progress check. The lesson begins by challenging the students to use their knowledge of alkanes and a given example to work out the name of a 6, 7 and 8 carbon alkane. Students need to be able to name the alkanes and alkenes in order to understand the products of a cracking reaction. A number of quiz competitions are used to introduce both the name of the reaction but also the temperature that is needed when it is carried out on an industrial scale. Students will then be shown a diagram of a cracking experiment in a laboratory so they can discover that a catalyst is also needed. Students will learn, either through carrying out the experiment or through the informative slide, that the product of a cracking reaction is a smaller alkane molecule and a smaller alkene molecule. Time is taken to go back over the meaning of saturated and unsaturated and once the students have been introduced to bromine water, they are challenged to work out what the respective reactions will be when it is added to an alkane and an alkene. The remainder of the lesson focuses on writing word and chemical symbol equations for a cracking reaction. Students will be shown how the second product of a reaction can be worked out when the reactant and first product are provided and then they challenge themselves by trying to write three equations. Understanding checks are written into the lesson at regular places to allow the students to check on their understanding. This lesson has been designed for GCSE students.
Alpha, beta and gamma radiation
GJHeducationGJHeducation

Alpha, beta and gamma radiation

(0)
An informative lesson presentation (37 slides) and associated question worksheet which looks at the key properties of alpha, beta and gamma radiation. Students are given key pieces of information during the lesson and are then challenged to use their knowledge of related topics such as atomic structure and waves to complete the information table about the types of radiation. By the end of the lesson, students will be able to compare the types of radiation on form, charge, relative mass, penetrating power and equation symbols. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding. This lesson has been written for GCSE students (14 - 16 year olds in the UK).
Genetic bottleneck and the Founder effect (OCR A-level Biology)
GJHeducationGJHeducation

Genetic bottleneck and the Founder effect (OCR A-level Biology)

(0)
This engaging and fully-resourced lesson looks at how genetic drift can arise after a genetic bottleneck or as a result of the Founder effect. The detailed PowerPoint and accompanying resources have been designed to cover the second part of point 6.1.2 (e) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the factors that affect the evolution of a species. A wide range of examples are used to show the students how a population that descends from a small number of parents will have a reduction in genetic variation and a change in the frequency of existing alleles. Students are encouraged to discuss new information to consider key points and understanding checks in a range of forms are used to enable them to check their progress and address any misconceptions. Students are provided with three articles on Huntington’s disease in South Africa, the Caribbean lizards and the plains bison to understand how either a sharp reduction in numbers of a new population beginning from a handful of individuals results in a small gene pool. Links to related topics are made throughout the lesson to ensure that a deep understanding is gained. This lesson has been designed to tie in with another uploaded lesson on types of selection which is part of this specification point
Edexcel GCSE Physics Topic 9 REVISION (Forces and their effects)
GJHeducationGJHeducation

Edexcel GCSE Physics Topic 9 REVISION (Forces and their effects)

(0)
This revision lesson has been filled with activities that will challenge the students on their knowledge and understanding of the content detailed in topic 9 of the Pearson Edexcel GCSE Physics specification. The wide range of activities in the engaging PowerPoint and accompanying resources will check on the knowledge of the forces and their effects topic and allow the students to recognise those areas which need further attention before the mock or terminal GCSE exams. This resource has been designed to cover as much of topic 9 as possible but the following points have received particular attention: What happens when objects can interact at a distance without contact What happens when objects can interact by contact Explain the difference between vector and scalar quantities using examples Draw free body diagrams Recall and use the equation to calculate the moment of a force Recall and use the principle of moments in situations where rotational forces are in equilibrium Explain ways of reducing unwanted energy transfer through lubrication The main task of the lesson which challenges students to use the principle of moments has been differentiated so that differing abilities can access the work
Solids, liquids and gases REVISION (TOPIC 5 Edexcel International GCSE Physics)
GJHeducationGJHeducation

Solids, liquids and gases REVISION (TOPIC 5 Edexcel International GCSE Physics)

(0)
This fully-resourced REVISION lesson has been written to challenge the students on their knowledge of the content of topic 5 Solids, liquids and gases) of the Pearson Edexcel International GCSE Physics specification. The engaging PowerPoint and accompanying resources will motivate the students whilst they assess their understanding of the content and identify any areas which may require further attention. The wide range of activities have been written to cover as much of the topic as possible but the following specification points have been given particular focus: Using the correct units Converting between the Kelvin and degrees Celsius scales Explain the qualitative relationship between pressure and Kelvin temperature Use the relationship between pressure and Kelvin temperature Know and use the equations for density and pressure Design an experiment to investigate density Know the meaning of the specific heat capacity Use the equation for change in thermal energy Quiz rounds such as “SAY WHAT YOU SEE” and “YOU DO THE MATH” are used to test the students on their knowledge of key terms as well as numerical facts
Protein synthesis: TRANSLATION (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Protein synthesis: TRANSLATION (Edexcel Int. A-level Biology)

(0)
This detailed lesson describes the role of the mRNA, tRNA, ribosomes and start and stop codons during the second stage of protein synthesis - translation. This lesson is the second in a series of two, which have been designed together to cover point 2.13 of the Edexcel International A-level Biology specification. The first lesson in this series describes transcription. Translation is a topic which is often poorly understood and so this lesson has been written to enable the students to understand how to answer the different types of questions by knowing and including the key details of the structures involved. The lesson begins by challenging the students to consider why it is so important that the amino acids are assembled in the correct order during the formation of the chain. Moving forwards, a quick quiz round called “LOST IN TRANSLATION” is used to check on their prior knowledge of the mRNA strand, the tRNA molecules, the genetic code and the ribosomes. The next task involves a very detailed description of translation that has been divided into 14 statements which the students have to put into the correct order. By giving them a passage that consists of this considerable detail, they can pick out the important parts to use in the next task where they have to answer shorter questions worth between 3 and 4 marks. These types of questions are common in the assessments and by building up through the lesson, their confidence to answer this type should increase. The final two tasks of the lesson involve another quiz, where the teams compete to transcribe and translate in the quickest time before using all that they have learnt to answer some exam-style questions which involve the genetic code and the mRNA codon table.
Structure & function of GLOBULAR proteins (OCR A-level Biology)
GJHeducationGJHeducation

Structure & function of GLOBULAR proteins (OCR A-level Biology)

(0)
This fully-resourced lesson describes the relationship between the structure and function of globular proteins, specifically focusing on haemoglobin, insulin and pepsin. The detailed and engaging PowerPoint and accompanying resources have been primarily designed to cover specification point 2.1.2 (n) of the OCR A-level Biology A course but due to the detailed coverage of haemoglobin, the start of this lesson could also be used when teaching lessons that cover specification points 3.1.2 (i) and (j). By the end of the lesson, students will be able to describe that the interactions of the hydrophobic and hydrophilic R groups results in a spherical shape that is soluble in water and be able to explain the importance of this property with reference to the individual functions of these three globular proteins. They will also be able to name key individual details for each protein, such as haemoglobin being a conjugated protein, insulin being linked by numerous disulfide bridges and pepsin’s low number of basic R groups meaning it is stable in the acidic environment of the stomach. Extra time has gone into the planning of this lesson to ensure that links are continuously made to previous topics such as amino acids and the levels of protein structure as well as to upcoming topics like the control of blood glucose concentration that is covered in module 5.1.4.
Treating CVD
GJHeducationGJHeducation

Treating CVD

(0)
An engaging lesson presentation (30 slides) that looks at the different methods that are used to treat cardiovascular diseases. The lesson begins by looking at the surgical procedure of heart bypass before exploring the use of stents to widen a partially blocked artery. Links are made back to previous knowledge when discussing valves and students are challenged to explain why a faulty valve must be replaced. The rest of the lesson focusses on treating CVD with medicines such as statins and antiplatelets and students will learn the side-effects associated with these drugs. This lesson has been designed for GCSE students but is suitable for all ages
Principles of DNA sequencing (OCR A-level Biology)
GJHeducationGJHeducation

Principles of DNA sequencing (OCR A-level Biology)

(0)
This detailed lesson describes the principles of DNA sequencing and has been designed to cover the first part of point 6.1.3 (a) of the OCR A-level Biology A specification. Fred Sanger’s chain termination method is used as the example to guide the students through the details of each step. The lesson begins with a focus on the common ingredients of the process such as DNA polymerase, DNA nucleotides and primers. Links are made to module 2.1.3 where nucleic acids were initially met through a series of prior knowledge check questions. Time is then taken to explain why these short lengths of synthesised nucleotides are necessary and this will support students when primers are met in the PCR and genetic engineering. Moving forwards, students will recognise how the modification to the nucleotide means that the chain terminates once a modified nucleotide is added into the sequence and that these have been radioactively labelled. Gel electrophoresis is introduced and an outline of the process given to provide knowledge to build on when this is encountered later in the module. A series of exam-style questions allow students to assess their understanding of this potentially difficult topic before students are encouraged to consider the limitations of the method so they are prepared to meet the new methods in upcoming lessons. A number of quiz competitions run throughout the lesson to maintain engagement and to introduce terms and values in a memorable way
OCR Gateway A GCSE Chemistry C2 REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Chemistry C2 REVISION

(0)
An engaging lesson presentation (64 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C2 (Elements, compounds and mixtures) of the OCR Gateway A GCSE Chemistry specification. The topics that are tested within the lesson include: Relative formula mass Empirical formula Pure and impure substances Separation methods Electronic structures Forming ions Ionic compounds Simple molecules Giant covalent substances Carbon Nanoparticles Students will be engaged through the numerous activities including quiz rounds like “SEPARATE the fact from the fiction” and “Higher or Lower” whilst crucially being able to recognise those areas which need further attention
OCR GCSE Biology Module B5 REVISION
GJHeducationGJHeducation

OCR GCSE Biology Module B5 REVISION

(0)
An engaging lesson presentation (61 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B5 (Genes, inheritance and selection) of the OCR Gateway A GCSE Biology specification The topics that are tested within the lesson include: Sexual and asexual reproduction Meiosis Dominant and recessive alleles Genetic crosses The history of genetics Natural selection Classification systems Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" and “Which Scientist is hidden?” whilst crucially being able to recognise those areas which need further attention
Vaccinations (GCSE)
GJHeducationGJHeducation

Vaccinations (GCSE)

(0)
This is an engaging lesson that looks at how vaccinations are used in medicine and considers how the introduction of these preventative measures has reduced the incidence of disease. The lesson begins by introducing vaccinations as the deliberate exposure to antigenic material and then reminds students of the meaning of the term, antigen, so that they understand how this will elicit the desired immune response. Lots of opportunities for discussion have been written into the lesson so that key points such as how the vaccination is altered so that isn’t harmful and how memory cells work can be discussed amongst students before being clarified by the teacher and the lesson content. Moving forwards, students will be given some figures on child mortality rate in 1900 and 2000. They are shown how to manipulate this data in order to work out the percentage change. Students are then challenged to use these skills when comparing the children that were vaccinated for whooping cough in 1968 and 1995 and to make a link between vaccinations and mortality rates. These mathematical skills are being tested more and more in Biology so this guidance will help students to understand how to manipulate data when required. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding. This lesson has been designed for GCSE aged students. If you’re looking for a lesson on this same topic but for older students at A-level, then my upload “Vaccinations (A-level)” will be more suitable
Edexcel GCSE Combined Science  Physics Topic 1 REVISION (Key concepts in Physics)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Physics Topic 1 REVISION (Key concepts in Physics)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Physics Topic 1 (Key concepts in Physics) of the Edexcel GCSE Combined Science specification. Topic 1 is common to both Paper 5 and 6 and therefore will be tested in both of these exams. The sub-topics and specification points that are tested within the lesson include: Recall and use the SI units for the physical quantities Recall and use multiples and sub-multiples of units, including giga, mega, kilo, centi, milli, micro and nano Be able to convert between different units, including hours to seconds Use significant figures and standard form where appropriate Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
Organisation of multicellular organisms (Edexcel SNAB)
GJHeducationGJHeducation

Organisation of multicellular organisms (Edexcel SNAB)

(0)
This lesson describes how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point 3.13 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and focuses on the levels of organisation in humans and plants The lesson begins by using the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students are challenged to remember how the shape and arrangement of these cells differ in the trachea and alveoli in relation to their function. The link between specialised cells and tissues is made at this point of the lesson so students are reminded that a tissue is a group of cells that work together to perform a specific function or set of functions. Moving forwards, a quick quiz competition will challenge the students to recognise the liver, kidney, spinal cord and pancreas from a brief functional description and this leads into a series of questions that links back to topics 1 and 2 and earlier in topic 3 where blood clotting, proteins, osmosis, organelles, methods of transport, carbohydrates and enzymes were originally covered. These prior knowledge checks are found throughout the lesson, along with current understanding checks, and all of the mark schemes are embedded into the PowerPoint to allow students to assess their progress. In terms of organ systems, a quick task challenges them to recognise 8 of the 11 that are found in humans from descriptions and this leaves them to identify the gaseous exchange, digestive and reproductive systems as the remaining 3. This leads into a section about cystic fibrosis as this genetic disorder impairs the functioning of these systems. The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy cells in the mesophyll layer and the guard cells are covered at length and in detail. The cells found in the xylem and phloem tissue are also discussed.
Significant figures (Maths in Science)
GJHeducationGJHeducation

Significant figures (Maths in Science)

(0)
A fully resourced lesson which includes an informative lesson presentation (25 slides) and an associated worksheet that show students how to give answers to a certain number of significant figures. The answers to questions in Science are often required to be given in significant figures and this lesson guides students through this process, including the rules of rounding that must be applied for success to be likely. This lesson has been designed for GCSE students but is suitable for KS3