Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1135k+Views

1937k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The mammalian gametes (Edexcel A-level Biology A)
GJHeducationGJHeducation

The mammalian gametes (Edexcel A-level Biology A)

(0)
This lesson describes the relationship between the specialised structural features of the mammalian gametes and their functions. The PowerPoint and accompanying resources have been designed to cover point 3.6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and includes descriptions of the acrosome in the head of the sperm and the zona pellucida in the egg The lessons at the start of topic 3 (Voice of the genome) described the ultrastructure of eukaryotic cells, so this knowledge is referenced throughout the lesson and the students are challenged on their recall and understanding through a range of prior knowledge checks. For example, two of the exam-style questions that are included in the resources challenge the students to explain why a sperm cell is classified as an eukaryotic cell and to recognise the centrioles and the nucleus from structural descriptions. Along with the mitochondria, time is then taken to discuss and to describe the role of these organelles in relation to the function of the sperm cell. When considering the role of the haploid nucleus, links are made to the upcoming topic of meiosis and the events that contribute to variation. The importance of the enzymes that are found inside the acrosome is emphasised and this leads into the second half of the lesson where the layers surrouding the plasma membrane of the egg cell (corona radiata and zona pellucida) are examined The final part of this lesson has been specifically planned to prepare the students for the next lesson in topic 3, where the acrosome reaction, cortical reaction and the fusion of nuclei that are involved in fertilisation are described
The role of the rER and Golgi in protein transport (Edexcel SNAB)
GJHeducationGJHeducation

The role of the rER and Golgi in protein transport (Edexcel SNAB)

(0)
This lesson describes the role of the rER and the Golgi apparatus in the formation of proteins, the transport within cells and their secretion. The PowerPoint and accompanying resources have been designed to cover point 3.3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and also includes key details about the role of the cytoskeleton in the transport of the vesicles that contain the protein between the organelles and the membrane. The lesson begins with the introduction of the cytoskeleton and explains how this network of protein structures transverses across the cytoplasm and is fundamental to the transport of molecules between organelles. The lesson has been planned to closely tie in with the previous lesson on the ultrastructure of eukaryotic cells and students are challenged on their knowledge of the function of the organelles involved in protein formation (and modification) through a series of exam-style questions. By comparing their answers against the mark scheme embedded in the PowerPoint, students will be able to assess their understanding of the following: Transcription in the nucleus to form an mRNA strand and the exit of this nucleic acid through the nuclear pore Translation at the ribosomes on the surface of the rER to assemble the protein Transport of the vesicles containing the protein to the Golgi apparatus Modification of the protein at the Golgi apparatus Formation of the Golgi vesicle and its transport to the cell membrane for exocytosis Time is taken to discuss the finer details of this process such as the arrival of the vesicle at the cis face and the transport away from the trans face and the requirement of ATP for the transport of the vesicles along the microtubule track and exocytosis. The remainder of the lesson uses a series of exam-style questions about digestive enzymes (extracellular proteins) to challenge the students on their recall of the structure of starch and proteins
Autoimmune diseases (OCR A-level Biology)
GJHeducationGJHeducation

Autoimmune diseases (OCR A-level Biology)

(0)
This lesson describes why a disease would be deemed to be an autoimmune disease and describes the mechanisms involved in a few examples. The PowerPoint and accompanying worksheets have been primarily designed to cover point 4.1.1 (k) of the OCR A-level Biology A specification, but this lesson can also be used to revise the content of modules 2 and 3 and the previous lessons in 4.1.1 through the range of activities included The lesson begins with a challenge, where the students have to recognise diseases from descriptions and use the first letters of their names to form the term, autoimmune. In doing so, the students will immediately learn that rheumatoid arthritis, ulcerative colitis, type I diabetes mellitus, multiple sclerosis and myasthenia gravis are all examples of autoimmune diseases. The next part of the lesson focuses on the mechanism of these diseases where the immune system cells do not recognise the antigens (self-antigens) on the outside of the healthy cells, and therefore treats them as foreign antigens, resulting in the production of autoantibodies against proteins on these healthy cells and tissues. Key details of the autoimmune diseases stated above and lupus are described and links to previously covered topics as well as to future topics such as the nervous system are made. The students will be challenged by numerous exam-style questions, all of which have mark schemes embedded into the PowerPoint to allow for immediate assessment of progress.
Balancing symbol equations
GJHeducationGJHeducation

Balancing symbol equations

(0)
A fully resourced lesson, which includes an informative lesson presentation (22 slides) and differentiated worksheets that guide students through the topic of balancing symbol equations. The lesson takes the students through the steps involved and begins by getting them to be able to recognise when an equation is balanced or not. The difficulty of the equations to be balanced increases as the lesson progresses and students are given helpful hints to aid their progress. This lesson is suitable for both KS3 and GCSE students
Electromagnetic Waves
GJHeducationGJHeducation

Electromagnetic Waves

(0)
A fully-resourced lesson that looks at the 7 electromagnetic waves, their differences, similarities and uses. The lesson includes an engaging presentation (54 slides) and associated worksheets. The lesson begins with a number of engaging activities to get the students to find out the names of the 7 waves in the spectrum. Students will be challenged to use their knowledge of the properties of waves to explain why they have been arranged in this particular order. Moving forwards, some time is taken to ensure that students recognise the similarities of the waves. The rest of the lesson focuses on the uses of the waves and a homework is also set to get students to increase the number of uses that they know for each wave. There are regular progress checks throughout the lesson so that students can assess their understanding at critical points. This lesson has primarily been designed for GCSE students (14 - 16 year olds in the UK) but could be used with students at KS3 who are doing a project
Circuit calculations (in series and parallel)
GJHeducationGJHeducation

Circuit calculations (in series and parallel)

(0)
A detailed lesson presentation which guides students through calculating the current, potential difference and resistance in series and parallel circuits. The lesson begins by challenging the students to recognise whether three displayed facts relate to series or parallel circuits. Students are then given a chance to remind themselves of the differences between the circuits in terms of these three physical factors. The rest of the lesson uses a step-by-step guide format to show the students how to work through a circuit calculation by combining their knowledge of the circuit with application of the V = IR equation. Progress checks have been written throughout the lesson so that students can constantly assess their understanding. This lesson has been designed for GCSE students
Exchange at the alveoli
GJHeducationGJHeducation

Exchange at the alveoli

(0)
A resourced lesson which looks at gas exchange at the alveoli and focuses on how these structures are adapted to carry out efficient gas exchange. The lesson includes an engaging lesson presentation (21 slides) and an associated worksheet. The lesson begins by revisiting the idea of the surface area to volume ratio of small organisms against larger organisms. This will remind students that due to the low surface area to volume ratio of a human, they need to have adaptations at the exchange surfaces to increase the surface area. Moving forwards, a range of competitions are used to introduce students to the numbers and key terms associated with the alveoli. Students will learn how the large number (700 million) of alveoli leads to a large surface area and how a permeable membrane is also essential. Time is written into the lesson to allow students to think about key features, such as the one cell thick lining, and relate this to the rate of diffusion. The lesson concludes with students completing a passage about how the respiratory and circulatory systems work together to maintain a steep concentration gradient between the alveoli and the capillaries. There are regular progress checks throughout the lesson to allow the students to check on their understanding. As always, the lesson finishes with a slide containing advanced terminology so that students who have aspirations to take A-level Biology can extend and deepen their knowledge
Elements
GJHeducationGJHeducation

Elements

(0)
This is an engaging lesson which uses a range of tasks and quiz competitions to ensure that the important details about elements are embedded so that students can use them in related Chemistry topics. The lesson begins by looking at the chemical symbols that are used with the elements. Students do not have to know the symbols off by heart because of the widely available Periodic Table but a sound knowledge will always help going forward. Time is taken to ensure that students understand how the symbols have to be written so that those with two letters consist of a capital and a lower case letter. In a race against each other, students are challenged to complete a crossword by converting symbols to the name of elements. This will result in a winner, a second placed and a third placed student who can be given a gold, silver and bronze medal. The atoms within each of these medals is explored so that students can learn that the gold and silver medals will only be made up of one type of atom and are therefore elements whilst the bronze is an alloy. The remainder of the lesson looks at some of the uses of the different elements and a homework task gets students to put this into written form. This lesson is suitable for both KS3 and GCSE students.
Organisation of the Periodic Table
GJHeducationGJHeducation

Organisation of the Periodic Table

(0)
This is a fully-resourced lesson that looks at how the atomic number and electron configuration of an atom can be used to place an element in the Periodic Table. This lesson has primarily been designed for GCSE-aged students but can be used with younger students who are studying the Table and know about electron configurations. The lesson begins by looking at the atomic number and ensuring that students recall how this number can be used to identify the number of protons (and electrons) in an atom. Time is taken to link to Dmitri Mendeleev and how he used the atomic number in his original formatting. Moving forwards, students will be challenged to write the electron configurations for a number of atoms from group 2 and then to identify the connection between the number of electrons in the outer shell and the group number. Again, time is taken to make links to other related topics such as the alkali metals, halogens and noble gases and how their chemical properties are similar based on this outer shell number. Students will discover how the period number is linked to the number of occupied shells. The remainder of the lesson uses two understanding checks to challenge the students to bring together their knowledge to place an element in the correct place in a blank Periodic Table when given information about the atomic number or electron configuration.
AQA GCSE Physics Topic 4 REVISION (Atomic structure)
GJHeducationGJHeducation

AQA GCSE Physics Topic 4 REVISION (Atomic structure)

(0)
This is an engaging and fully resourced REVISION lesson which uses a range of exam questions, understanding checks, quick differentiated tasks and quiz competitions to enable students to assess their understanding of the content within topic 4 (Atomic structure) of the AQA GCSE Physics (8463) specification. The specification points that are covered in this revision lesson include: Students should know that atoms are very small, having a radius of about 1 × 10-10 metres. Students should know that the basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons Students should be able to use the atomic number and mass number and understand how these differ in isotopes Students should know the key stages in the development of the model of the atom and the main pieces of evidence that were found Students should know that some atomic nuclei are unstable and that the nucleus gives out radiation as it changes to become more stable. Students should know the penetrating and ionising power and range in air of the alpha particles, beta particles and gamma rays Students should be able to represent decay with equations and be able to describe the effect on the atomic and mass number Students should be able to determine the half-life of a radioactive isotope from given information. Students should be able to describe nuclear fission and fusion The students will thoroughly enjoy the range of activities, which include quiz competitions such as “It’s as easy as ABG” where they have to compete to be the 1st to work out the word formed from the letters of the different types of radiation whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
Edexcel GCSE Combined Science Topic B3 REVISION (Genetics)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic B3 REVISION (Genetics)

(0)
This is a fully-resourced REVISION lesson which challenges the students on their knowledge of the content in TOPIC B5 (Genetics) of the Edexcel GCSE Combined Science specification. The lesson uses an engaging PowerPoint (63 slides) and accompanying worksheets to motivate students whilst they assess their understanding of this topic. A range of exam questions, quick tasks and quiz competitions are used to test the following sub-topics: Recognising and using genetic terminology in context Constructing genetic diagrams to calculate offspring percentages for diseases caused by dominant and recessive alleles The sex chromosomes and sex determination Meiosis and the formation of haploid daughter cells The structure of DNA Extracting DNA from a fruit Genetic and environmental variation Mutations and their effect on the phenotype The mathematical element of the course is also tested throughout the lesson and students are given helpful hints on exam techniques and how to structure answers. This resource is suitable for use at the end of topic B3 or in the lead up to mocks or the actual GCSE exams.
Edexcel GCSE Combined Science Topic B2 REVISION (Cells and control)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic B2 REVISION (Cells and control)

(0)
This is a fully-resourced REVISION lesson which challenges the students on their knowledge of the content in TOPIC B2 (Cells and control) of the Edexcel GCSE Combined Science specification. The lesson uses an engaging PowerPoint (70 slides) and accompanying worksheets to motivate students whilst they assess their understanding of this topic. A range of exam questions, quick tasks and quiz competitions are used to test the following sub-topics: The structure of the CNS Reflex reactions and the neurones involved Synapses Mitosis and the cell cycle The use of percentile charts to monitor growth Cell differentiation and specialisation Stem cells and their potential for use in medicine There is a big emphasis on the mathematical elements of the course such as percentage change and standard form and students are given helpful hints on exam techniques and how to structure answers. This resource is suitable for use at the end of topic B2 or in the lead up to mocks or the actual GCSE exams.
The action & specificity of enzymes (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The action & specificity of enzymes (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the mechanism of action of enzymes and explains how their specificity is related to their 3D structure. The engaging PowerPoint and accompanying resources have been designed to cover points 2.7 (i), (ii) and (iii) in unit 1 of the Edexcel International A-level Biology specification and introduces intracellular and extracellular enzymes where these proteins act to reduce the activation energy. The lesson has been specifically planned to tie in with related topics that were previously covered such as protein structure, globular proteins and intracellular enzymes. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The lesson finishes with a focus on ATP synthase and DNA polymerase so that students are aware of these important intracellular enzymes when learning about the details of respiration and DNA replication
Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)

(0)
This lesson describes how Fick’s law of diffusion is governed by the three main properties of gas exchange surfaces in living organisms. The PowerPoint and accompanying worksheets have been designed to cover points 2.1 (i & ii) of the Edexcel International A-level Biology specification and there is a particular focus on the relationship between the size of an organism or structure and its surface to volume ratio. Adolf Fick is briefly introduced at the start of the lesson and the students will learn that his law of diffusion governs the diffusion of a gas across a membrane and is dependent on three properties. The students are likely to know that surface area is one of these properties but although they may have been introduced to the surface area to volume ratio at iGCSE, their understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of this ratio in order to increase the relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson to walk them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of an organism and this leads into the next part of the lesson, where the adaptations of a human to increase the ratio at the gas exchange surface is covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. The remainder of the lesson introduces concentration difference and thickness of membrane as the other two properties in Fick’s law of diffusion and students are reminded that the maintenance of a steep concentration gradient and a reduction in the diffusion distance are critical for this transport mechanism. This lesson has been specifically planned to prepare students for the next lesson which describes how the structure of the mammalian lung is adapted for rapid gas exchange (specification point 2.1 [iii])
International & local conservation agreements (OCR A-level Biology A)
GJHeducationGJHeducation

International & local conservation agreements (OCR A-level Biology A)

(0)
This lesson describes the international and local conservation agreements that are made to protect species and habitats. The detailed PowerPoint and accompanying worksheets have been designed to cover point 4.2.1 (i) of the OCR A-level Biology A specification and includes details of CITES, CBD and CSS. Many hours of research have gone into the planning of this lesson to ensure that a range of interesting biological examples are included, with the aim of fully engaging the students in the material to increase its relevance. Beginning with the Convention on International Trade in Endangered Species of Wild Fauna and Flora, the students will learn that this was first agreed in 1973 and that 35000 species are currently found in appendix I, II or III. Time is taken to go through the meaning of each appendix and then the following animal and plant species are used to explain the finer details of the agreement: Tree pangolin, eastern black rhino for CITES appendix I Darwin’s orchid for CITES appendix II Four-horned antelope for CITES appendix III Exam-style questions are used to check on their understanding of the current topic as well as to challenge their knowledge of previously-covered topics such as the functions of keratin, when considering the structure of the rhino horn. Each of these questions has its own markscheme which is embedded in the PowerPoint and this allows the students to constantly assess their progress. Moving forwards, the Rio Convention on Biological Diversity is introduced and students will understand that this is a key document regarding sustainable development. The final part of the lesson considers local conservation agreements, focusing on the Countryside Stewardship Scheme and its replacement, the Environmental Stewardship Scheme. Students are told that farmers, woodland owners, foresters and land managers can apply for funding for a range of options including hedgerow management, low input grassland, buffer strips, management plans and soil protection options. The importance of the hedgerows for multiple species is discussed, and again a real-life example is used with bats to increase the likelihood of retention. The last task challenges them to use their overall knowledge of module 4.2.1 (biodiversity) to explain why buffer strips consisting of multiple types of vegetation are used and to explain why these could help when a farmer is using continuous monoculture.
Biodiversity at different levels and Simpson's Index of diversity (OCR A-level Biology)
GJHeducationGJHeducation

Biodiversity at different levels and Simpson's Index of diversity (OCR A-level Biology)

(0)
This lesson discusses how biodiversity may be considered at different levels and describes how to calculate Simpson’s Index of diversity. The PowerPoint and accompanying worksheets have primarily been designed to cover points 4.2.1 (a, c and d) of the OCR A-level Biology A specification but also make links to the upcoming topics of classification, natural selection and adaptations A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise species, population, biodiversity, community and natural selection from their respective definitions. Once biodiversity as the variety of living organisms in a habitat is revealed, the students will learn that this can relate to a range of habitats, from those in the local area to the Earth. Moving forwards, the students will begin to understand that biodiversity can be considered at a range of levels which include within a habitat, within a species and within different habitats so that they can be compared. Species richness as a measure of the number of different species in a community is met and a biological example in the rainforests of Madagascar is used to increase its relevance. However, students will also be introduced to species evenness and will learn that in order for a habitat to be deemed to be biodiverse, it must be both species rich and even. The students are introduced to an unfamiliar formula that calculates the heterozygosity index and are challenged to apply their knowledge to this situation, as well as linking a low H value to natural selection. The rest of the lesson focuses on the calculation of Simpson’s Index of diversity and a 4-step guide is used to walk students through each part of the calculation. This is done in combination with a worked example to allow students to visualise how the formula should be applied to actual figures. Using the method, they will then calculate a value of D for a comparable habitat to allow the two values to be considered and the significance of a higher value is explained. All of the exam-style questions have mark schemes embedded in the PowerPoint to allow students to continuously assess their progress and understanding.
Gel electrophoresis (OCR A-level Biology)
GJHeducationGJHeducation

Gel electrophoresis (OCR A-level Biology)

(0)
This fully-resourced lesson explains how gel electrophoresis is used to separate DNA fragments or proteins and explores its applications in genetic fingerprinting. The engaging and detailed PowerPoint and accompanying resources have been written to cover point 6.1.3 (e) of the OCR A-level Biology A specification The steps of the genetic fingerprinting process is covered the whole lesson but the main focus is the use of gel electrophoresis within this process. Students will be introduced to STRs and will come to recognise their usefulness in human identification as a result of the variability between individuals. Moving forwards, the involvement of the PCR is discussed and students are challenged on their knowledge of this process as it was encountered in a previous lesson. A brief outline of the role of restriction enzymes is provided to support students when these key gene technology enzymes are met in more detail later in the module. The main section of the lesson focuses on the use of gel electrophoresis to separate DNA fragments (as well as proteins) and the key ideas of separation due to differences in base pair length or molecular mass are discussed and explained. As well as current understanding checks, an application question involving Huntington’s disease is used to challenge their ability to apply their knowledge of the process to an unfamiliar situation. The remainder of the lesson describes how the DNA is transferred to a membrane and hybridisation probes are used to create a pattern on the X-ray film. Time has been taken to make continuous links to the previous lessons in module 6.1.3 as well as those from module 2.1.3 where DNA, RNA and protein synthesis were introduced.
Electric current
GJHeducationGJHeducation

Electric current

(0)
An engaging lesson presentation (30 slides) that looks at electric current and ensures that students know the key details about this factor in preparation for their GCSE studies. The lesson begins by forming a definition for this electrical term and then as the lesson progresses, this definition is broken so that each element is understood. Students will be introduced to the difference between electron flow and conventional current. Time is taken to ensure that students understand that an ammeter must be set up in series. The remainder of the lesson will focus on the mathematical calculations which include current and important skills such as converting between units is covered.] As stated above, this lesson has been designed primarily for those students taking their GCSE exams (14 - 16 year olds in the UK) but is suitable for younger students too.
The BLOOD VESSELS
GJHeducationGJHeducation

The BLOOD VESSELS

(0)
A fully-resourced lesson which looks at the structures of arteries, veins and capillaries and ensures that students can relate these features to their respective functions. The lesson includes an engaging lesson presentation (41 slides) and a differentiated worksheet The lesson begins by getting the students to come up with a really simple rule to remind themselves that arteries carry blood away from the heart. They are then challenged to extend this definition by considering the pressure of the blood found in arteries. Students will learn that most arteries carry oxygenated blood but will consider and recall the artery which is the exception to the rule. Students are shown a diagram of the basic structure of the artery and the reasons for the narrow lumen and thick muscular wall are explained. Moving forwards, students are challenged to use the work on arteries to sketch a diagram of a vein and to explain why they have given this vessel certain features. A quick competition is then used to check their understand of the work so far whilst introducing valves and again they are given a chance to work out which blood vessel would need these structures in their lumen. The remainder of the lesson focuses on the capillary and time is taken to relate the features to an actual example involving the alveoli of the lungs. There are regular progress checks throughout the lesson to allow the students to check on their understanding. As always, the lesson finishes with a slide containing advanced terminology so that students who have aspirations to take A-level Biology can extend and deepen their knowledge
Understanding GENETIC TREES
GJHeducationGJHeducation

Understanding GENETIC TREES

(0)
A fully-resourced lesson which guides students through using genetic trees to work out the genotypes of unknown individuals and also how to work out whether a condition is caused by a dominant or a recessive allele. This lesson includes a detailed lesson presentation (24 slides) and a series of differentiated questions to allow the students to try to apply their new-found knowledge. The lesson begins by challenging students to recall the meaning of the key terms, genotype and phenotype. Time is taken initially to explain how genetic trees can be used in questions. Lots of useful hints are given throughout the lesson, such as filling in the genotypes for those that you already know like the affected in a recessive condition. Moving forwards, a worked example is used to talk the students through a question. Students are then given the opportunity to try a question and this has been differentiated so those who need extra assistance can still access the work. The remainder of the lesson shows the students how they can use the tree to work out whether the condition is caused by a dominant or recessive allele and again a progress check is used so students can assess their understanding. This lesson has been designed for both GCSE and A-level students.