Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1135k+Views

1937k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Non-specific immune responses (Edexcel A-level Biology A)
GJHeducationGJHeducation

Non-specific immune responses (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the non-specific responses of the body to infection and includes details of phagocytosis, inflammation and interferon release. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover the content of point 6.7 of the Pearson Edexcel A-level Biology A specification but topics including antigen-presentation are also introduced to prepare students for upcoming lessons on the immune response (6.8 & 6.9). At the start of the lesson, the students are challenged to recall that cytosis is a suffix associated with transport mechanisms and this introduces phagocytosis as a form of endocytosis which takes in pathogens and foreign particles. This emphasis on key terminology runs throughout the course of the lesson and students are encouraged to consider how the start or end of a word can be used to determine meaning. The process of phagocytosis is then split into 5 key steps and time is taken to discuss the role of opsonins as well as the fusion of lysosomes and the release of lysozymes. A series of application questions are used to challenge the students on their ability to make links to related topics including an understanding of how the hydrolysis of the peptidoglycan wall of a bacteria results in lysis. Students will be able to distinguish between neutrophils and monocytes from a diagram and at this point, the role of macrophages and dendritic cells as antigen-presenting cells is described so that it can be used in the next lesson. The importance of cell signalling for an effective immune response is discussed and the rest of the lesson focuses on the release of two chemicals - interferons and histamine. During the interferon section, references are made to a previous lesson on HIV structure and action so students can understand how the release of these signalling proteins helps neighbouring cells to heighten their anti-viral defences. A step by step guide is used to describe the release of histamine in the inflammatory response and the final task challenges students to use this support to form a detailed answer regarding the steps in inflammation.
OCR Gateway A GCSE Combined Science REVISION:  Units B1 - 3
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science REVISION: Units B1 - 3

(0)
A fun and highly engaging lesson presentation (37 slides) and associated worksheets that combines exam questions and progress checks along with competition rounds to enable students to assess their understanding of the specification content within units B1 - 3 of the OCR Gateway A 9 - 1 GCSE Science. All of the exam questions and progress checks have displayed answers as well as sections where content is recapped so that students can understand how an answer was obtained. The revision rounds in the competition include “Blockbusters”, “Doctor, Doctor” and “Crack the CODE”. This lesson has been designed for GCSE students.
Velocity-time graphs
GJHeducationGJHeducation

Velocity-time graphs

(0)
A detailed lesson presentation (37 slides) that looks at the different motions that are represented on a velocity-time graph and guides students through using these graphs to calculate the distance travelled by an object. The lesson begins by challenging the students to construct a velocity-time graph by using a displayed guide and using their knowledge of drawing a distance-time graph. Moving forwards, the students will match terms of motion to the lines on the graph and time is taken to make links to the physics equations that allow acceleration and deceleration to be calculated. Students will also learn that they can use a velocity-time graph to calculate the distance travelled. A worked example is used to show them how to tackle these questions. There are regular progress checks throughout the lesson so that students can assess their understanding of this topic. This lesson has been designed for GCSE students but could be used with higher ability KS3 students
OCR Gateway A GCSE Chemistry C6 (Global challenges) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Chemistry C6 (Global challenges) REVISION

(0)
An engaging lesson presentation (79 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C6 (Global Challenges) of the OCR Gateway A GCSE Chemistry specification. The topics that are tested within the lesson include: Making ethanol Extracting metals Extracting iron Extracting aluminium Alloys Alkanes Alkenes Alcohols Carboxylic acids Polymers Water for drinking Students will be engaged through the numerous activities including quiz rounds like “It’s time for ACTION” and “Are YOU on FORM” whilst crucially being able to recognise those areas which need further attention
OCR Gateway A GCSE Combined Science Module B5 (Genes, inheritance and selection) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science Module B5 (Genes, inheritance and selection) REVISION

(0)
An engaging lesson presentation (54 slides) that uses a variety of exam questions, quick tasks and competitions to allow students to assess their understanding of the different topics within Module B5 of the Combined Science specification. All of the exam questions have displayed answers and some are differentiated to allow for the differing abilities. The students will enjoy the competitions which include "Take the HOTSEAT" and "This shouldn't be too TAXING" whilst recognising those areas which require further attention.
Edexcel GCSE Combined Science Topic P6 REVISION (Radioactivity)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P6 REVISION (Radioactivity)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic P6 (Radioactivity) of the Edexcel GCSE Combined Science specification. The sub-topics and specification points that are tested within the lesson include: Describe the structure of an atom, including the charge and mass of the subatomic particles Describe the structure of nuclei of isotopes Be able to explain why an atom is neutral Recall the radiation that can be emitted from an unstable nucleus Explain what is meant by background radiation and know the origins of this radiation Recall that an alpha particle is equivalent to a helium nucleus Compare alpha, beta and gamma radiations in terms of their abilities to penetrate and ionise Describe the processes of beta plus and beta minus decay Explain the effects on the atomic and mass number of radioactive decays Balance nuclear decay equations Recall that the unit of activity of a radioactive isotope is the Becquerel Use the concept of half life to carry out simple calculations Describe the differences between contamination and irradiation Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
CIE International A-level Biology TOPIC 12 REVISION (Energy and respiration)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 12 REVISION (Energy and respiration)

(0)
This fully-resourced REVISION LESSON has been designed to provide the students with numerous opportunities to assess their understanding of the content of topic 12 (Energy and respiration) of the CIE International A-level Biology specification. The importance of this metabolic reaction is obvious and this is reflected in the volume of questions in the terminal exams which require an in depth knowledge of the stages of both aerobic and anaerobic respiration. The lesson contains a wide range of activities that cover the following points of the specification: Glycolysis as a stage of aerobic and anaerobic respiration The use and production of ATP through respiration Anaerobic respiration in mammalian muscle tissue The stages of aerobic respiration that occur in the mitochondrial matrix Oxidative phosphorylation The use of respirometers Calculating the respiratory quotient value for different substrates Revision lessons which cover the other topics of the specification are also uploaded and tie in well with this lesson.
CIE International A-level Biology TOPIC 4 REVISION (Cell membranes and transport)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 4 REVISION (Cell membranes and transport)

(0)
This detailed and engaging REVISION LESSON has been written to cover the content of topic 4 (Cell membranes and transport) of the CIE International A-level Biology specification. The lesson consists of a PowerPoint that contains exam questions, differentiated tasks and quiz competitions and is accompanied by worksheets with further activities. The competitions act to engage the students whilst they assess their understanding of the content and challenges their ability to apply this knowledge to potentially unfamiliar situations. The lesson was designed to cover as much of the specification content as possible but the following sub-topics have received particular attention: Active transport and its applications in animals and plants Facilitated diffusion and the use of channel and carrier proteins The factors that affect diffusion as demonstrated by gas exchange at the alveoli Exocytosis Water potential and the movement of water by osmosis The effect of solutions of different water potentials on animal and plant tissue The fluid mosaic model The plasma cell membrane and the function of its components As well as covering the current topic, the design of this lesson has been conscious to include future topics. For example, a cholinergic synapse was used to challenge the students to spot examples of facilitated diffusion, simple diffusion, active transport and exocytosis. Revision lessons for the other 18 topics are uploaded on TES or are in the process of being uploaded.
Bacteriostatic & bactericidal antibiotics (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Bacteriostatic & bactericidal antibiotics (Pearson Edexcel A-level Biology A)

(0)
This fully-resourced lesson introduces bacteriostatic and bactericidal antibiotics and describes their differences, focusing on their modes of action. The engaging PowerPoint and accompanying resources have been designed to cover point 6.14 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also makes continual links to earlier lessons in topic 6 as well as related topics from the previous year such as protein synthesis from topic 2 The lesson begins by challenging the students to use their knowledge of the previous topic 6 lessons to identify the suffixes cidal and static. Students will learn that when the prefix is added, these form the full names of two types of antibiotics. Their understanding of terminology is tested further as they have to recognise that Polymyxin B is an example of a bactericidal antibiotic as its actions would result in the death of the bacterial cell. Tetracycline is used as the example of a bacteriostatic antibiotic and students will discover that its prevention of the binding of tRNA that inhibits protein synthesis and this reduction and stopping of growth and reproduction is synonymous with these drugs. Students are challenged on their knowledge of translation and will also be given time for a class discussion to understand that these antibiotics encourage the body’s immune system to overcome the pathogen in natural, active immunity. The final part of the lesson uses a quick quiz competition and a series of exam-style questions to ensure that students can recognise the different antibiotics from descriptions.
Archaea, Bacteria & Eukarya & virus classification (CIE A-level Biology)
GJHeducationGJHeducation

Archaea, Bacteria & Eukarya & virus classification (CIE A-level Biology)

(0)
This lesson describes the characteristic features of the three domains and explains why viruses are not included in this classification. The PowerPoint and accompanying resources have been primarily designed to cover points 18.2 (b) & 18.2 (d) of the CIE A-level Biology specification but also contains tasks that challenge the students on their knowledge of taxonomic hierarchy from this topic and the features of virus from topic 1. The lesson begins with an introduction of the microbiologist Carl Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in the last lesson, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank and will understand that it wasn’t until 13 years after the discovery that it was adopted. Moving forwards, the rest of the lesson explains why viruses are not included in this classification and outlines how they are classified, according to the ICTV, through the type of nucleic acid they contain and whether this is single-stranded or double-stranded
Prenatal testing & genetic screening (Edexcel SNAB)
GJHeducationGJHeducation

Prenatal testing & genetic screening (Edexcel SNAB)

(0)
This lesson describes the uses and implications of pre-implantation genetic diagnosis, amniocentesis and chorionic villus sampling. The lesson PowerPoint and accompanying worksheets have been primarily designed to cover point 2.15 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but regular links are made to the earlier content of topics 1 & 2, and their knowledge of topics including the heart and circulation, monohybrid inheritance and cystic fibrosis are tested. The lesson begins by challenging them to use this prior knowledge of topic 2 to identify the letters in the abbreviations PGD and CVS. The involvement of IVF to obtain the embryos (or oocytes) is then discussed and a series of exam-style questions are used to get them to understand how this method screens embryos prior to implantation, so that those identified as having genetic diseases or being carriers are not inserted into the female’s uterus. Mark schemes for all of the questions included in this lesson are embedded into the PowerPoint so students can constantly assess their progress. Moving forwards, Down syndrome (trisomy 21) is used as an example of a chromosomal abnormality that can be tested for using CVS or amniocentesis. Time is taken to describe the key details of both of these procedures so students have a clear understanding of the implications and the invasiveness to the female being tested. The link between amniocentesis and an increased risk of miscarriage is considered and the results of a 2006 study are used to challenge them on their data skills.
Antibiotic resistance (CIE A-level Biology)
GJHeducationGJHeducation

Antibiotic resistance (CIE A-level Biology)

(0)
This lesson outlines how bacteria become resistant to antiobiotics and discusses its consequences and the steps taken to reduce its impact. The PowerPoint and accompanying worksheet have been designed to cover specification points 10.2 (b & c) of the CIE A-level Biology specification President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. Moving forwards, 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of the development of resistance by evolution through natural selection. The main task of the lesson challenges the students to form a description to explain how this strain of bacteria developed resistance to methicillin, making use of the five key terms emphasised above. Moving forwards, there is a focus on the hospital as the common location for MRSA infections and students will recognise that this opportunistic pathogen can infect through open wounds to cause sepsis and potentially death. Figures from infections and deaths in hospitals in the US are used to increase the relevance and students will learn how a MRSA prevention program in VHA facilities includes screening of surgery patients to try to reduce its impact. The lesson concludes with a discussion about other methods that can be used by hospitals and general practitioners to reduce the impact of MRSA and to try to prevent the development of resistance in other strains.
DNA structure (OCR A-level Biology)
GJHeducationGJHeducation

DNA structure (OCR A-level Biology)

(0)
This lesson looks at the structure of the DNA that is found in the nucleus, mitochondria and chloroplasts of eukaryotic cells and in prokaryotic cells. Both the engaging PowerPoint and accompanying resources have been designed to cover point 2.1.3 (d)(i) of the OCR A-level Biology A specification. As students will already have some knowledge of this nucleic acid from GCSE and from the earlier A-level topics, the lesson has been written to build on this prior knowledge and then to add key detail. As well as focusing on the differences between the DNA found in these two types of cells which includes the length, shape and association with histones, the various tasks will ensure that students are confident to describe how this double-stranded polynucleotide is held together by hydrogen and phosphodiester bonds. This knowledge of phosphodiester bonds means that specification point 2.1.3 © is also covered during this lesson. These tasks include exam-style questions which challenge the application of knowledge as well as a few quiz competitions to maintain engagement.
Translation (OCR A-level Biology)
GJHeducationGJHeducation

Translation (OCR A-level Biology)

(0)
This detailed lesson describes the role of the mRNA, tRNA, rRNA and amino acids during the second stage of protein synthesis - translation. Both the PowerPoint and accompanying resources have been designed to cover the second part of point 2.1.3 (g) of the OCR A-level Biology A specification and continually links back to the previous lessons in this module on the structure of DNA and RNA and the genetic code Translation is a topic which is often poorly understood and so this lesson has been written to enable the students to understand how to answer the different types of questions by knowing and including the key details of the structures involved. The lesson begins by challenging the students to consider why it is so important that the amino acids are assembled in the correct order during the formation of the chain. Moving forwards, a quick quiz round called “LOST IN TRANSLATION” is used to check on their prior knowledge of the mRNA strand, the tRNA molecules, the genetic code and the ribosomes. The next task involves a very detailed description of translation that has been divided into 14 statements which the students have to put into the correct order. By giving them a passage that consists of this considerable detail, they can pick out the important parts to use in the next task where they have to answer shorter questions worth between 3 and 4 marks. These types of questions are common in the assessments and by building up through the lesson, their confidence to answer this type should increase. The final two tasks of the lesson involve another quiz, where the teams compete to transcribe and translate in the quickest time before using all that they have absorbed to answer some questions which involve the genetic code and the mRNA codon table
The effect of concentration on enzyme activity (OCR A-level Biology)
GJHeducationGJHeducation

The effect of concentration on enzyme activity (OCR A-level Biology)

(0)
This fully-resourced lesson describes the effects of enzyme and substrate concentration on enzyme activity. The PowerPoint and accompanying resources are the third in a series of 3 lessons which cover the details of point 2.1.4 (d) [i] of the OCR A-level Biology A specification and students are also challenged on their recall of the details of transcription and translation as covered in module 2.1.3. The first part of the lesson describes how an increase in substrate concentration will affect the rate of reaction when a fixed concentration of enzyme is used. Time is taken to introduce limiting factors and students will be challenged to identify substrate concentration as the limiting factor before the maximum rate is attained and then they are given discussion time to identify the possible factors after this point. A series of exam-style questions are used throughout the lesson and the mark schemes are displayed to allow the students to assess their understanding and for any misconceptions to be immediately addressed. Moving forwards, the students have to use their knowledge of substrate concentration to construct a graph to represent the relationship between enzyme concentration and rate of reaction and they have to explain the different sections of the graph and identify the limiting factors. The final section of the lesson describes how the availability of enzymes is controlled in living organisms. Students will come to recognise that this availability is the result of enzyme synthesis and enzyme degradation and a SPOT THE ERRORS task is used to challenge their recall of protein synthesis. Please note that this lesson explains the Biology behind the effect of concentration on enzyme activity and not the methodology involved in carrying out such an investigation as this is covered in the lessons designed in line with point 2.1.4 (d) [ii]
The PATHOGENS that cause communicable diseases (OCR A-level Biology)
GJHeducationGJHeducation

The PATHOGENS that cause communicable diseases (OCR A-level Biology)

(0)
This lesson describes the different types of pathogens that can cause communicable diseases in plants and animals. The PowerPoint and accompanying worksheets have been primarily designed to cover point 4.1.1 (a) of the OCR A-level Biology specification but as this is the first lesson in module 4, it has been specifically planned to make links to upcoming topics such as phagocytosis, vaccinations and classification. viruses - HIV/AIDS, influenza, TMV bacteria - TB, cholera, ring rot protoctista - malaria fungi - athlete’s foot, black sigatoka, ringworm, The diseases shown above are covered by the detailed content of this lesson and the differing mechanisms of action of the four types of pathogens are discussed and considered throughout. For example, time is taken to describe how HIV uses a glycoprotein to attach to T helper cells whilst toxins released by bacteria damage the host tissue and the Plasmodium parasite is transmitted from one host to another by a vector to cause malaria. The accompanying worksheets contain a range of exam-style questions, including a mathematical calculation, and mark schemes are embedded into the PowerPoint to allow students to immediately assess their understanding.
Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-catalysed reaction. The PowerPoint and accompanying resource are the last in a series of 4 lessons which cover the content detailed in point 3.2 (a) of the CIE A-level Biology specification but this lesson also covers point 3.2 [c] as competitive and non-competitive inhibitors are introduced and their differing effects on enzyme activity described and explained. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this allows students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors must have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Behaviour of chromosomes in MITOSIS (CIE A-level Biology)
GJHeducationGJHeducation

Behaviour of chromosomes in MITOSIS (CIE A-level Biology)

(0)
This fully-resourced lesson describes the behaviour of chromosomes during the mitotic cell cycle and explains the importance of this type of nuclear division. The PowerPoint and accompanying resources have been designed to cover points 5.1 (b) & 5.2 (a) of the CIE A-level Biology specification and make direct links to a previous lesson which covered the outline of cell cycle Depending upon the exam board taken at iGCSE, the knowledge and understanding of mitosis will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson so that existing errors are addressed and key points are emphasised throughout. Their understanding of interphase is challenged at the start of the lesson to ensure that they realise that it is identical pairs of sister chromatids that enter the M phase. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. There is a focus on the centrioles and the spindle fibres that they produce which contract to drag one chromatid from each pair in opposite directions to the poles of the cell. The remainder of the lesson is a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final quiz round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture.
Edexcel GCSE Combined Science Topic P12 & P13 REVISION
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P12 & P13 REVISION

(0)
This REVISION lesson contains an engaging powerpoint (45 slides) and is fully-resourced with associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topics P12 (Magnetism and the motor effect) and P13 (Electromagnetic induction) of the Edexcel GCSE Combined Science specification. Generally, these topics are poorly understood by students but are regularly assessed through questions in the GCSE exams and so time has been taken to design the lesson so that the key points are covered and common misconceptions addressed. The following specification points are covered in this lesson: Recall that unlike magnetic poles attract and like magnetic poles repel Explain the difference between permanent and induced magnets Describe the use of plotting compasses to show the shape and direction of the field of a magnet and the Earth’s magnetic field Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must be magnetic Explain that magnetic forces are due to interactions between magnetic fields Recall and use Fleming’s left-hand rule to represent the relative directions of the force, the current and the magnetic field for cases where they are mutually perpendicular Use the equation which connects force on a conductor, magnetic flux density, current and length Recall that a transformer can change the size of an alternating voltage Explain why, in the national grid, electrical energy is transferred at high voltages from power stations, and then transferred at lower voltages in each locality for domestic uses as it improves the efficiency by reducing heat loss in transmission lines Explain where and why step-up and step-down transformers are used in the transmission of electricity in the national grid Use the power equation (for transformers with 100% efficiency) This lesson is suitable for use throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
Hormones in human reproduction (AQA GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Hormones in human reproduction (AQA GCSE Biology & Combined Science HT)

(0)
This lesson has been designed to cover the higher tier content of specification point 5.3.4 (Hormones in human reproduction) which is found in topic 5 of the AQA GCSE Biology & Combined Science specifications. A wide range of activities will engage and motivate the students whilst the content is covered in detail and understanding checks are included at regular points to enable the students to self-assess their new found knowledge. The following Biology is covered in this lesson: Reproductive hormones in the development of secondary sexual characteristics The role of testosterone as the main male reproductive hormone The role of oestrogen and progesterone in the repair and maintenance of the uterus lining The role of FSH and LH in the maturation of an egg and ovulation The interaction of these four hormones in the control of the menstrual cycle The final part of the lesson involves a number of questions where the students are challenged to apply their knowledge to unfamiliar situations This lesson has been designed for GCSE-aged students who are taking the AQA GCSE Biology or Combined Science course but it is also suitable for younger students who are looking into this topic as part of the reproduction module