Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
PAPER 3 FOUNDATION TIER REVISION (AQA GCSE Combined Science)
GJHeducationGJHeducation

PAPER 3 FOUNDATION TIER REVISION (AQA GCSE Combined Science)

(0)
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics C1 - C5, that will assessed on PAPER 3. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to cover as many sub-topics as possible, but the following have been given particular attention: The relative mass and charge of protons, electrons and neutrons Using the Periodic table to calculate numbers of the sub-atomic particles Writing elements and compounds in chemical symbol equations Covalent structures Drawing dot and cross diagrams for covalent and ionic compounds The transfer of electrons during the formation of an ionic bond Properties of metals and non-metals States of matter Conservation of mass and balancing symbol equations Calculating the relative formula mass Electrolysis of molten salts and aqueous solutions Extraction of metals In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as drawing dot and cross diagrams and writing chemical formulae. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3/4 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 3 exam.
Using genome projects (AQA A-level Biology)
GJHeducationGJHeducation

Using genome projects (AQA A-level Biology)

(0)
This fully-resourced lesson explores how projects to sequence the genomes of both simple and complex organisms can be used. Both the detailed PowerPoint and accompanying resources have been designed to cover the content of point 8.3 of the AQA A-level Biology specification. The start of the lesson describes each step of Sanger’s chain termination method and demonstrates how this method has paved the way for other projects. The use of the modified nucleotides are explained and links are made to the topic 4 and 2 where protein synthesis and DNA replication were first introduced. Students will learn how the radioactively-labelled nucleotide at the end of each fragment allows the next base to be determined. Key processes like gel electrophoresis are introduced and details provided to support the students when this is encountered in greater detail in 8.4.3. Moving forwards, the applications of sequencing in simple organisms like viruses and bacteria are explored and the students are challenged on their prior knowledge of bacterial pathogenesis and current understanding of sequencing through a series of exam-style questions. The final part of the lesson looks at the difficulties of translating genome knowledge into proteome knowledge and considers the development of automated methods. Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to cover all of the points which have been written into the various tasks
PAPER 5 REVISION FT (Edexcel Combined Science FOUNDATION TIER)
GJHeducationGJHeducation

PAPER 5 REVISION FT (Edexcel Combined Science FOUNDATION TIER)

(0)
This is a fully-resourced lesson which uses exam-style questions, engaging quiz competitions, quick tasks and discussion points to challenge students on their understanding of the content of topics P1 - P6, that will assessed on PAPER 5. It has been specifically designed for students on the Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to cover as many specification points as possible but the following sub-topics have been given particular attention: Factors affecting thinking and braking distance The 7 recall and apply equations tested in PAPER 5 The units associated with the physical factors challenged in PAPER 5 Recognising the motions represented by different motions on velocity-time graphs Using a velocity-time graph to calculate acceleration Resultant forces Sound waves as longitudinal waves The electromagnetic waves Using significant figures and standard form The relative charges and masses of the particles in an atom Recognising isotopes Using the half-life of radioactive isotopes The development of the atomic model In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been incorporated into the lesson to walk through students through some of the more difficult concepts such as half-life calculations. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 5 exam.
PAPER 1 FOUNDATION TIER REVISION (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

PAPER 1 FOUNDATION TIER REVISION (Edexcel GCSE Combined Science)

(0)
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics B1 - B5, that will assessed on PAPER 1. It has been specifically designed for students on the Pearson Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to take place at the local hospital where the students have to visit numerous wards and clinics and the on-site pharmacy so that the following sub-topics can be covered: Cancer as the result of uncontrolled cell division The production of gametes by meiosis Mitosis and the cell cycle Sex determination The difference between communicable and non-communicable diseases The pathogens that spread communicable diseases Identification of communicable diseases Treating bacterial infections with antibiotics Evolution of antibiotic resistance in bacteria Vaccinations Genetic terminology Genetic diagrams Structures involved in a nervous reaction A Reflex arc Risk factors Chemical and physical defences Osmosis and percentage gain and loss Fossils as evidence for human evolution In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for assistance sheets when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as genetic diagrams and evolution by natural selection. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 1 exam.
PAPER 2 REVISION FOUNDATION TIER (OCR Combined Science)
GJHeducationGJHeducation

PAPER 2 REVISION FOUNDATION TIER (OCR Combined Science)

(0)
This is a fully-resourced lesson which uses exam-style questions, quiz rounds, quick tasks and discussion points to challenge students on their understanding of the content of topics B4 - B6, that will assessed on PAPER 2. It has been specifically designed for students on the OCR Gateway A GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to take place at the hospital and the students will visit the various wards and health clinics day to check on their knowledge of the following sub-topics : Cancer The production of gametes by meiosis The meaning of diploid and haploid Sex determination The difference between communicable and non-communicable diseases Diseases caused by bacteria, viruses, fungi and protists Treatment of bacterial infections using antibiotics Evolution by natural selection in bacteria Vaccinations Genetic terminology Inheritance of disorders caused by dominant and recessive alleles Risk factors of non-communicable diseases Ecosystems The carbon cycle and the increase in carbon dioxide levels In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as genetic diagrams and interpreting the results and evolution by natural selection. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 2 exam.
Edexcel GCSE Science PAPER 2 REVISION HT
GJHeducationGJHeducation

Edexcel GCSE Science PAPER 2 REVISION HT

(0)
This is a fully-resourced revision lesson that has been written to challenge students on their knowledge and understanding of the PAPER 2 topics. The range of tasks will prepare the students to answer the range of questions that they may encounter on topics B1 and B6 - B9 as detailed in the Pearson Edexcel GCSE Combined Science specification. The lesson has been designed to take place on the PAPER 2 HIGH STREET and the tasks include exam-style questions with displayed mark schemes, engaging quiz competitions and discussion points to allow the following points to be covered: Eukaryotic vs Prokaryotic cells Converting between units of size The structures of the animal and plant cells The structure of the human heart Calculating the surface area to volume ratio Adaptations of the gas exchange system The blood vessels associated with the human heart Calculating the cardiac output The features of the root hair cell to allow for absorption The nitrogen cycle The relationship between the rate of photosynthesis and light intensity and distance Using the inverse square law calculation Temperature and photosynthesis The regulation of blood glucose by the release of insulin and glucagon Diabetes type I and II Calculating the BMI The interaction of the reproductive hormones in the menstrual cycle IVF as assisted reproductive technology The hormonal and barrier methods of contraception Eutrophication as a negative human interaction in an ecosystem The carbon cycle In order to cater for the range of abilities that can be found in Combined Science classes, most of the tasks have been differentiated. There are also a number of step by step guides to demonstrate how to tackle some of the more difficult concepts including the mathemetical elements If you would like to see the quality of these revision lessons, download the PAPER 1 REVISION LESSON which has been shared for free
Maths in Edexcel GCSE Chemistry REVISION
GJHeducationGJHeducation

Maths in Edexcel GCSE Chemistry REVISION

(0)
This fully-resourced lesson with differentiated resources has been written to prepare students for the range of mathematical-based questions they may face on the two Edexcel GCSE Chemistry papers. The lesson has been designed to contain a wide range of activities which includes 8 quiz competition rounds spread across the duration of the lesson to maintain engagement whilst the students assess their understanding. The mathematical skills covered in this lesson include: Calculating the number of sub-atomic particles in atoms and ions Writing chemical formulae for ionic compounds Identifying isotopes Calculating the relative atomic mass using isotope mass and abundance Using Avogadro’s constant to calculate the number of particles Calculating the relative formula mass Calculating amount in moles using the mass and the relative formula mass Balancing chemical symbol equations Calculating reacting masses Gas calculations using molar volume Calculating concentration of solutions Titration calculations Deducing the empirical formula Calculating energy changes in reactions Most of the resources have been differentiated two ways to allow students of differing abilities to access the work whilst still being challenged. In addition, step by step guides are used to demonstrate how to carry out some of the more difficult calculations such as the harder mole calculations and calculating masses in reactions This lesson could be used with higher ability students on the Edexcel GCSE Combined Science course by taking out the sections which are not applicable.
Unit 2 B3: Blood flow through the heart (Pearson BTEC Sport & Exercise Science)
GJHeducationGJHeducation

Unit 2 B3: Blood flow through the heart (Pearson BTEC Sport & Exercise Science)

(0)
This lesson describes and explains how the contraction of the heart chambers during atrial and ventricular systole and the relaxation during diastole causes blood to flow through the heart. The engaging PowerPoint and accompanying resource have been designed to cover the first part of point B3 of UNIT 2 of the Pearson BTEC Level 3 National Diploma in Sport and Exercise Science specification. The students will have already encountered aspects of the cardiac cycle in unit 1 and this lesson aims to build on that knowledge. Students will be reminded that the sequence of events known as the cardiac cycle can be split into three parts, which are atrial systole, ventricular systole and diastole. There is a particular focus on the role of the AV and semi-lunar valves in the control of blood flow and students are challenged to explain how pressure changes cause these valves to open or close. The final task of the lesson involves a quiz round called “RECYCLE THIS?” where the teams have to use their knowledge of the cardiac cycle and the function and anatomy of the heart and blood vessels from a previous lesson to spot any errors in the description of blood flow through the heart This lesson has been specifically designed to tie in with the next lesson outlined in the specification on the neural control of the cardiac cycle
Heart structure (Edexcel A-level PE)
GJHeducationGJHeducation

Heart structure (Edexcel A-level PE)

(0)
This fully-resourced lesson describes the structure of the heart as well as the associated blood vessels. Both the engaging PowerPoint and accompanying differentiated resources have been designed to cover the 1st part of point 1.2.5 as detailed in the Edexcel A-level PE specification which states that students need to learn about the anatomical components and structure of the heart. The structure of the heart is a topic which was covered in part at GCSE so this lesson has been written to build on that prior knowledge. The main task of the lesson involves students labelling the different structures as they are recalled. Time is taken at different points of the lesson to look at some of the structures and concepts in further detail. For example, students will learn that humans have a double circulatory system, as detailed in point 1.2.6, and that the thicker muscular wall of the left ventricle allows the blood in the systemic circulation to be pumped at a higher pressure than in the pulmonary circulation. Students are also challenged to explain why a hole in the septum would cause health issues for an affected individual and this links back to previous work in unit 1 on energy systems. By the end of the lesson, the students will be able to identify the following structures and describe their individual functions: right and left atria right and left ventricles septum tricuspid and bicuspid valve semi-lunar valves pulmonary artery and pulmonary vein vena cava aorta A number of quiz rounds are used throughout the lesson to introduce key terms in a fun and memorable way before the final round is used as a final check so they can assess whether they can recognise the structures and recall their functions.
Cardiac cycle (Edexcel A-level PE)
GJHeducationGJHeducation

Cardiac cycle (Edexcel A-level PE)

(0)
This lesson describes and explains how the contraction of the heart chambers during atrial and ventricular systole and the relaxation during diastole causes blood to flow through the heart. The engaging PowerPoint and accompanying resource have been designed to cover the first part of point 1.2.6 as detailed in the Edexcel A-level PE specification which states that students need to learn about the physiology of the cardiovascular system with regards to the cardiac cycle. The students will have already encountered aspects of the cardiovascular system in topic 1.2.5 and this lesson aims to build on that knowledge. Students will be introduced to the sequence of events known as the cardiac cycle and will learn that the cycle can be split into three parts, which are atrial systole, ventricular systole and diastole. There is a particular focus on the role of the AV and semi-lunar valves in the control of blood flow and students are challenged to explain how pressure changes cause these valves to open or close. The final task of the lesson involves a quiz round called “RECYCLE THIS?” where the teams have to use their knowledge of the cardiac cycle and the function and anatomy of the heart and blood vessels from a previous lesson to spot any errors in the description of blood flow through the heart
Cardiac cycle (OCR A-level PE)
GJHeducationGJHeducation

Cardiac cycle (OCR A-level PE)

(0)
This lesson describes and explains how the contraction of the heart chambers during atrial and ventricular systole and the relaxation during diastole causes blood to flow through the heart. The engaging PowerPoint and accompanying resource have been designed to cover the 2nd point of the “Cardiovascular system at rest” topic in 1.1.b of the OCR A-level PE specification The students will have already encountered aspects of the cardiovascular system earlier in this section and this lesson aims to build on that knowledge. Students will be introduced to the sequence of events known as the cardiac cycle and will learn that the cycle can be split into three parts, which are atrial systole, ventricular systole and diastole. There is a particular focus on the role of the AV and semi-lunar valves in the control of blood flow and students are challenged to explain how pressure changes cause these valves to open or close. The final task of the lesson involves a quiz round called “RECYCLE THIS?” where the teams have to use their knowledge of the cardiac cycle and the structures of the heart and blood vessels to spot any errors in the description of blood flow through the heart
Mass transport (AQA A-level Biology)
GJHeducationGJHeducation

Mass transport (AQA A-level Biology)

10 Resources
This fully-resourced bundle includes 10 detailed PowerPoint lessons and their accompanying worksheets which cover the content as set out in topic 3.4 (Mass transport) of the AQA A-level Biology specification. This topic includes sections on mass transport in animals (3.4.1) and mass transport in plants (3.4.2). The lessons have been designed to include a wide range of tasks to maintain motivation whilst ensuring that the understanding of the content is constantly checked and links are made to other topics. The specification points in topic 3.4 which are covered in these lessons are: The haemoglobins The role of haemoglobin in the transport of oxygen The oxyhaemoglobin dissociation curve The Bohr effect The general pattern of blood circulation in a mammal The gross structure of the human heart The valve movements in the cardiac cycle The structure of the blood vessels The formation of tissue fluid The transport of water in the xylem The structure of the phloem tissue Translocation by mass flow If you would like to see the quality of these lessons, download the arteries, tissue fluid and translocation lessons as these have been uploaded for free
Topic 6.1: Structure and replication of DNA (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 6.1: Structure and replication of DNA (CIE International A-level Biology)

4 Resources
All 4 of the lessons included in this bundle are fully-resourced with differentiated tasks to cater for all abilities of students whilst containing the detail to push them to the next level. These lessons have been designed to cover the details of topic 6.1 of the CIE International A-level Biology specification which concerns the structure and replication of DNA The following specification points are covered within these lessons: The structure of nucleotides ATP as a phosphorylated nucleotide The structure of DNA The structure of mRNA, tRNA and rRNA DNA replication Links are continually made throughout the lessons to previously-covered topics as well as to those which will be covered later in the AS course or during the second year If you would like to sample the quality of the lessons, download the semi-conservative replication lesson as this has been shared for free
Topic 6: Nucleic acids and protein synthesis (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 6: Nucleic acids and protein synthesis (CIE International A-level Biology)

8 Resources
This is a fully-resourced lesson bundle, where the detailed and engaging PowerPoints and accompanying worksheets have been designed to cover the details of topic 6 of the CIE International A-level Biology specification which concerns the nucleic acids and protein synthesis. All 7 of the lessons include differentiated tasks to cater for all abilities of students whilst containing the detail to push them to the next level. The following specification points are covered within these lessons: The structure of nucleotides ATP as a phosphorylated nucleotide The structure of DNA The structure of mRNA, tRNA and rRNA DNA replication Genes and polypeptides Gene mutations Sickle cell anaemia Transcription and translation Links are continually made throughout the lessons to previously-covered topics as well as to those which will be covered later in the AS course or during the second year If you would like to sample the quality of the lessons, download the semi-conservative replication and gene mutation lessons as these have been shared for free
Phospholipids (AQA A-level Biology)
GJHeducationGJHeducation

Phospholipids (AQA A-level Biology)

(0)
This engaging lesson describes the relationship between the structure and properties of a phopholipid and explains the link to its role in membranes. The PowerPoint has been designed to cover the second part of point 1.3 of the AQA A-level Biology specification and includes constant references to the previous lesson on triglycerides. The role of a phospholipid in a cell membrane provides the backbone to the whole lesson. A quick quiz round called FAMILY AFFAIR, challenges the students to use their knowledge of the structure of a triglyceride to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the bilayer which is critical for the lesson in topic 2 on the fluid mosaic model. The final part of the lesson explains how both facilitated diffusion and active transport mean that proteins are found floating in the cell membrane and this also helps to briefly prepare the students for upcoming topic 2 lessons.
Disaccharides (AQA A-level Biology)
GJHeducationGJHeducation

Disaccharides (AQA A-level Biology)

(0)
Disaccharides are formed from the condensation of two monosaccharides and this lesson describes the formation of maltose, sucrose and lactose. The PowerPoint and accompanying question sheet have been designed to cover the second part of point 1.2 of the AQA A-level Biology specification but also make links to the previous lesson on monosaccharides when considering the different components of these three disaccharides. The first section of the lesson focuses on a prefix and a suffix so that the students can recognise that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge as they have to describe how condensation reactions and the formation of glycosidic bonds were involved in the synthesis of each one. The main task of the lesson again challenges the students to recall details of a previous lesson as they have to identify the monomers of each disaccharide when presented with the displayed formula. Time is taken to show how their knowledge of these simple sugars will be important in later topics such as digestion, translocation in the phloem and the Lac Operon in the control of gene expression. The lesson finishes with two exam-style questions where students have to demonstrate and apply their newly acquired knowledge
PAPERS 1 - 6 FOUNDATION TIER REVISION (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

PAPERS 1 - 6 FOUNDATION TIER REVISION (Edexcel GCSE Combined Science)

6 Resources
This bundle of 6 revision lessons challenges the students on their knowledge of the content of all of the topics that are detailed in the Edexcel GCSE Combined Science specification and can be assessed on the 6 terminal GCSE papers. Specifically, the range of tasks which include exam-style questions (with displayed answers), quiz competitions and discussion points, have been designed for students taking the FOUNDATION TIER papers but could also be used with students taking the higher tier who need to ensure that the key points are embedded on some topics. The majority of the tasks are differentiated 2 or 3 ways so that a range of abilities can access the work whilst remaining challenged by the content. If you would like to see the quality of these lessons, download the paper 2, 4 and 6 revision lessons as these have been shared for free
Structure of DNA & RNA (AQA A-level Biology Topic 1)
GJHeducationGJHeducation

Structure of DNA & RNA (AQA A-level Biology Topic 1)

(0)
This detailed and engaging lesson describes the structural similarities and differences between DNA and RNA. The PowerPoint and accompanying worksheet containing exam-style questions have been designed to cover point 1.5.1 of the AQA A-level Biology specification. In the first lesson of topic 1, the students were introduced to a number of monomers which included a nucleotide. In line with this, the start of the lesson challenges them to recognise the key term nucleotide when only the letters U, C and T are shown. The next part of the lesson describes the structure of a DNA nucleotide and an RNA nucleotide so that the pentose sugar and the bases adenine, cytosine and guanine can be recognised as similarities whilst deoxyribose and ribose and thymine and uracil are seen as the differences. Time is taken to discuss how a phosphodiester bond is formed between adjacent nucleotides and their prior knowledge and understanding of condensation reactions is tested through a series of questions. Students are then introduced to the purine and pyrimidine bases and this leads into the description of the double-helical structure of DNA and the hydrogen bonds between complementary bases. The final section of the lesson describes the structure of mRNA, tRNA and rRNA and students are challenged to explain why this single stranded polynucleotide is shorter than DNA In addition to the current understanding and prior knowledge checks, a number of quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the final round acts as a final check on the structures of DNA and RNA.
DNA replication (AQA A-level Biology)
GJHeducationGJHeducation

DNA replication (AQA A-level Biology)

(0)
This fully-resourced lesson describes the process of DNA replication and explains how this ensures genetic continuity between generations. Both the detailed PowerPoint and accompanying resources have been designed to cover point 1.5.2 of the AQA A-level Biology specification and also explains why it is known as semi-conservative. The main focus of this lesson is the roles of DNA helicase in the breaking the hydrogen bonds between nucleotide bases and DNA polymerase in forming the growing nucleotide strands. Students are also introduced to DNA ligase to enable them to understand how this enzyme functions to join the nucleic acid fragments. Time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
The difference between monosaccharides, disaccharides & polysaccharides (Edexcel A-level Biology A)
GJHeducationGJHeducation

The difference between monosaccharides, disaccharides & polysaccharides (Edexcel A-level Biology A)

(0)
This engaging lesson acts as an introduction to carbohydrates and describes the differences between monosaccharides, disaccharides and polysaccharides. The PowerPoint and accompanying worksheet have been designed to cover the first part of points 1.12 & 1.13 of the Pearson Edexcel A-level Biology A specification and make clear links to the upcoming lessons in this sub-topic on these three main groups of carbohydrates. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. A number of quick quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the first round allows the students to meet some of common monosaccharides. Moving forwards, students will learn that a disaccharide is formed when two of these monomers are joined together and they are then challenged on their knowledge of condensation reactions which were originally encountered during the lesson on water. Students will understand how multiple reactions and multiple glycosidic bonds will result in the formation of a polysaccharide and glycogen and starch are introduced as well as amylose and amylopectin as components of this latter polymer. The final part of the lesson considers how hydrolysis reactions allow polysaccharides and disaccharides to be broken back down into monosaccharides.