Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Distribution in a habitat (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Distribution in a habitat (Edexcel Int. A-level Biology)

(0)
This lesson describes the meaning of ecological terms and explains how biotic and abiotic factors control the distribution of organisms in a habitat. The engaging PowerPoint and accompanying resources have been designed to cover points 5.11, 5.12 and 5.13 in unit 4 of the Edexcel International A-level Biology (Salters Nuffield) specification and therefore cover the biological definitions of ecosystem, community, population and habitat. A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller: community ecosystem abiotic factor photosynthesis respiratory substrate biomass calorimetry distribution niche The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Links are made to photosynthesis and net primary productivity as these will be met later in topic 5 as well as challenging their prior knowledge of adaptations, heterozygosity index classification and biological molecules. The final part of the lesson uses an exam-style question to get the students to recognise that biotic and abiotic factors control the distribution of organisms in a habitat and to recall the concept of niche.
Topic 5: Energy Flow, Ecosystems and the Environment (Edexcel International A-level Biology)
GJHeducationGJHeducation

Topic 5: Energy Flow, Ecosystems and the Environment (Edexcel International A-level Biology)

8 Resources
As the first topic to be taught at the start at the second year of the Edexcel International A-level Biology course, topic 5 is very important and the content includes the key reaction of photosynthesis. All 9 of the lessons included in this bundle are highly detailed and have been filled with a wide variety of tasks which will engage and motivate the students whilst covering the following specification points: The overall reaction of photosynthesis The phosphorylation of ADP and the hydrolysis of ATP The light-dependent reactions of photosynthesis The light-independent reactions of photosynthesis The products of the Calvin cycle The structure of the chloroplasts and the role of this organelle in photosynthesis Be able to calculate net primary productivity Know the relationship between NPP, GPP and R Understand the meaning of the terms ecosystem, community, population and habitat The numbers and distribution of organisms in a habitat are controlled by biotic and abiotic factors The concept of niche The effect of temperature on the rate of enzyme activity and the calculation of the Q10 Isolation reduces gene flow and leads to allopatric and sympatric speciation If you would like to sample the quality of the lessons in this bundle, then download the products of photosynthesis lesson as this has been uploaded for free
Topic 4: Biodiversity and natural resources (Edexcel SNAB)
GJHeducationGJHeducation

Topic 4: Biodiversity and natural resources (Edexcel SNAB)

10 Resources
This lesson bundle contains 10 lesson PowerPoints and their accompanying resources which are filled with a wide variety of tasks to motivate and engage the students whilst covering the detailed content of topic 4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. Extensive planning has gone into each lesson to ensure that understanding is complete and that students are challenged to make links to previously covered topics. The tasks include exam-style questions, differentiated tasks, guided discussion points and quick quiz competitions and together these cover the following specification points in topic 4: The meaning of the terms biodiversity and endemism Measuring biodiversity within a habitat using species richness and within a species by calculating the heterozygosity index Comparing biodiversity between habitats by calculating an index of diversity The concept of niche and examples of behavioural, anatomical and physiological adaptations Natural selection can lead to adaptation and evolution The Hardy-Weinberg equation can be used to see whether a change in allele frequency is occurring in a population over time Reproductive isolation can lead to the formation of new species Classification is built around the species concept Critical evaluation of new data by the scientific community, which leads to new taxonomic groupings The ultrastructure of plant cells The structure and function of the polysaccharides starch and cellulose The similarities and differences between the structures, position and function of sclerenchyma fibres, xylem vessels and phloem Evaluate the methods used by zoos and seed banks in the conservation of endangered species and their genetic diversity If you would like to sample the quality of the lessons in this bundle, then download the isolation and speciation, ultrastructure of plant cells and xylem, phloem and sclerenchyma lessons as these have been uploaded for free
Rod cells in the retina (Edexcel A-level Biology A)
GJHeducationGJHeducation

Rod cells in the retina (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes how rod cells in the mammalian retina detect stimuli to allow vision in low light intensity. The detailed PowerPoint and accompanying resources have been designed to cover the second part of point 8.5 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and includes reference to the roles of rhodopsin, opsin, retinal, sodium ions, cation channels and hyperpolarisation in the formation of action potentials in the optic neurones. It is likely that students will be aware that the human retina contains rod and cone cells, so this lesson builds on that knowledge and adds the detail needed at this level. Students will discover that the optical pigment in rod cells is rhodopsin and that the bleaching of this into retinal and opsin results in a cascade of events that allows an action potential to be initiated along the optic nerve. Time is taken to go through the events that occur in the dark and then the students are challenged to use this as a guide when explaining how the events differ in the light. Key terms like depolarisation and hyperpolarisation, that were met earlier in topic 8, are used to explain the changes in membrane potential and the resulting effect on the connection with the bipolar and ganglion cells is then described.
Contraction of skeletal muscle (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Contraction of skeletal muscle (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the process of contraction of skeletal muscle in terms of the sliding filament theory. The PowerPoint and accompanying resources have been designed to cover point 7.11 of the Edexcel International A-level Biology specification and includes descriptions of the role of actin, myosin, troponin, tropomyosin, calcium ions, ATP and ATPase. The lesson begins with a study of the structure of the thick and thin filaments. Students will recognise that the protruding heads of the myosin molecule are mobile and this enables this protein to bind to the binding sites when they are exposed on actin. This leads into the introduction of troponin and tropomyosin and key details about the binding of calcium to this complex is explained. Moving forwards, students are encouraged to discuss possible reasons that can explain how the sarcomere narrows during contraction when the filaments remain the same length. This main part of the lesson goes through the main steps of the sliding filament model of muscle contraction and the critical roles of the calcium ions and ATP are discussed. The final task of the lesson challenges the students to apply their knowledge by describing the immediate effect on muscle contraction when one of the elements doesn’t function correctly. This lesson has been written to tie in with the previous lesson on the structure of skeletal muscle fibre (point 7.10)
Hormones & transcription factors (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Hormones & transcription factors (Edexcel Int. A-level Biology)

(0)
This lesson describes the extracellular action of peptide hormones and the role played by steroid hormones in binding to DNA transcription factors. The detailed PowerPoint and accompanying resources have been designed to cover point 7.22 of the Edexcel International A-level Biology specification and focuses on the differing effects of these two types of hormones on their target cells Students should have a base knowledge of the endocrine system from GCSE so this lesson has been planned to build on that knowledge and to add the detail needed at this level. The lesson begins by challenging this knowledge to check that they understand that endocrine glands secrete these hormones directly into the blood. Students will learn that most of the secreted hormones are peptide (or protein) hormones and a series of exam-style questions are used to challenge them on their recall of the structure of insulin as well as to apply their knowledge to questions about glucagon. Moving forwards, the students are reminded that hormones have target cells that have specific receptor sites on their membrane. The relationship between a peptide hormone as a first messenger and a second messenger on the inside of the cell is covered in detail in an upcoming lesson but students are briefly introduced to G proteins and cyclic AMP so they are prepared. The rest of the lesson focuses on steroid hormones and specifically their ability to pass through the membrane of a cell and to bind to transcription factors, as exemplified by oestrogen. Students covered transcription and the control of gene expression in topics 2 and 3 so the final tasks challenge their recall of these concepts
Oxidative phosphorylation (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (Edexcel Int. A-level Biology)

(0)
This lesson describes how the electron transport chain and the chemiosmosis are involved in the synthesis of ATP by oxidative phosphorylation. The PowerPoint has been designed to cover point 7.4 of the Edexcel International A-level Biology specification and also looks at the role of the enzyme, ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 steps and at each point, key facts are discussed and explored in detail to enable a deep understanding to be developed. Students will see how the proton gradient is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP. Understanding checks are included throughout the lesson to enable the students to assess their progress. This lesson has been specifically written to tie in with the other uploaded lessons on glycolysis, the link reaction and Krebs cycle.
Homeostasis & exercise (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Homeostasis & exercise (Edexcel Int. A-level Biology)

(0)
This lesson reminds students of the meaning of homeostasis and describes the how thermoregulation maintains the body in dynamic equilibrium during exercise. The PowerPoint has been designed to cover point 7.17 of the Edexcel International A-level Biology specification. Students were introduced to homeostasis at GCSE and this lesson has been written to build on that knowledge and to add the key detail needed at this level. Focusing on the three main parts of a homeostatic control system, the students will learn about the role of the internal and peripheral thermoreceptors, the thermoregulatory centre in the hypothalamus and the range of effectors which bring about the responses to restore optimum levels. The following responses are covered in this lesson: Vasodilation Increased sweating Body hairs In each case, time is taken to challenge students on their ability to make links to related topics such as the arterioles involved in the redistribution of blood and the high specific latent heat of vaporisation of water.
Cardiac output (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Cardiac output (Edexcel Int. A-level Biology)

(0)
This lesson describes how to calculate the cardiac output as the product of stroke volume and the heart rate. The PowerPoint and accompanying resource have been designed to cover point 7.13 (i) of the Edexcel International A-level Biology specification. The lesson begins by challenging the students to recognise that the left ventricle has the most muscular wall of all of the heart chambers. This allows the stroke volume to be introduced as the volume of blood ejected from the left ventricle each heart beat and then a quiz competition is used to introduce normative values for the stroke volume and the heart rate. Moving forwards, students will learn that the cardiac output is the product of the stroke volume and the heart rate. A series of exam-style questions will challenge the students to use this formula and to manipulate it and to work out the percentage change. The final part of the lesson looks at the adaptation of the heart to aerobic training in the form of cardiac hypertrophy and then the students are challenged to work out how this would affect the stroke volume, the cardiac output and the resting heart rate.
Topic 6: Immunity, infection and forensics (Edexcel A-level Biology A)
GJHeducationGJHeducation

Topic 6: Immunity, infection and forensics (Edexcel A-level Biology A)

9 Resources
This lesson bundle contains 9 lesson PowerPoints and their accompanying resources which have been intricately planned to deliver the detailed content of topic 6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and to make links to the 5 previously covered topics. In addition to the detailed content, each lesson contains exam-style questions with mark schemes embedded into the PowerPoint, differentiated tasks, guided discussion points and quick quiz competitions to introduce key terms and values in a fun and memorable way. The following specification points are covered by the lessons in this bundle: DNA can be amplified using the PCR Comparing the structure of bacteria and viruses Understand how Mycobacterium tuberculosis and human immunodeficiency virus infact human cells The non-specific responses of the body to infection The roles of antigens and antibodies in the body’s immune response The differences in the roles of the B and T cells in the body’s immune response Understand how one gene can give rise to more than one protein The development of immunity The major routes that pathogens may take when entering the body The role of barriers in protecting the body from infection The difference between bacteriostatic and bactericidal antibiotics If you would like to sample the quality of the lessons in this bundle, then download the immune response and post-transcriptional changes lessons as these have been uploaded for free
Detection of stimuli (Edexcel A-level Biology A)
GJHeducationGJHeducation

Detection of stimuli (Edexcel A-level Biology A)

(0)
This lesson describes how the sensory receptors of the nervous system detect stimuli by transducing different forms of energy into electrical energy. The PowerPoint has been designed to cover the content of the 1st part of specification point 8.5 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and acts as an introduction to the next lesson where the roles of the rod cells in the retina is described. The lesson begins by using a quiz to get the students to recognise the range of stimuli which can be detected by receptors. This leads into a task where the students have to form 4 sentences to detail the stimuli which are detected by certain receptors and the energy conversion that happen as a result. Students will be introduced to the idea of a transducer and learn that receptors always convert to electrical energy which is the generator potential. The remainder of the lesson focuses on the Pacinian corpuscle and how this responds to pressure on the skin, resulting in the opening of the sodium channels and the flow of sodium ions into the neurone to cause depolarisation.
Topic 3: Voice of the Genome (Edexcel SNAB)
GJHeducationGJHeducation

Topic 3: Voice of the Genome (Edexcel SNAB)

13 Resources
This bundle contains 13 detailed lesson PowerPoints, which together with their accompanying resources, have been planned to include a wide variety of tasks that will engage and motivate the students whilst covering the content of topic 3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The voice of the genome topic content includes key biological concepts such as eukaryotic cells, cell division and genetics and the following specification points are covered by these lessons: All living organisms are made of cells, sharing common features The ultrastructure of eukaryotic cells and the role of the organelles The role of the rER and the Golgi body in protein transport The relationship between the features of the mammalian gametes and their functions The loci is the location of a gene on a chromosome The linkage of genes on a chromosome and sex linkage The role of meiosis in ensuring genetic variation The role of mitosis and the cell cycle The meaning of the terms stem cell, pluripotency and totipotency The decisions about the use of stem cells in medical therapies The specialisation of cells through differential gene expression Understand how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems Phenotype is the interaction between genotype and the environment Epigenetic changes can modify the activation of certain genes Some phenotypes are affected by multiple alleles for the same gene at many loci as well as the environment and this gives rise to continuous variation If you would like to sample the quality of lessons in this bundle, then download the ultrastructure of eukaryotic cells, mitosis and the cell cycle and gene expression lessons as these have been uploaded for free
Topic 5.2: The human nervous system (AQA GCSE Biology)
GJHeducationGJHeducation

Topic 5.2: The human nervous system (AQA GCSE Biology)

4 Resources
These 4 lessons cover the content of topic 5.2 of the AQA GCSE Biology specification - The human nervous system. Each of the lesson PowerPoints and their accompanying resources have been designed to contain a wide range of tasks which will engage and motivate the students whilst covering the GCSE content. There are also lots of understanding checks so students can check on their current understanding as well as prior knowledge checks where they are challenged to make links to previously-covered topics.
Topic 5: Homeostasis and response (AQA GCSE Biology)
GJHeducationGJHeducation

Topic 5: Homeostasis and response (AQA GCSE Biology)

12 Resources
This bundle contains 12 lesson PowerPoints and their accompanying resources, and all of them have been planned at length to cover the GCSE content of topic 5 of the AQA GCSE Biology specification, whilst engaging and motivating the students with a wide range of tasks. These tasks include exam-style questions with answers included in the PowerPoint, guided discussion points and quick quiz rounds which are used to introduce key terms and values in a fun and memorable way whilst instilling some competition The following Homeostasis and response specification points are covered by the lessons in this bundle: Homeostasis* Structure and function of the human nervous system The brain The eye Control of body temperature Human endocrine system Control of blood glucose concentration Maintaining water and nitrogen balance in the body* Hormones in human reproduction Contraception* The use of hormones to treat infertility Negative feedback If you would like to sample the quality of lessons in this bundle, then download the lessons indicated with an asterisk as they have been uploaded for free
Pathogens and the body's barriers to infection (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Pathogens and the body's barriers to infection (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the major routes that pathogens take when entering the body and the body’s barriers to this infection. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 6.7 (i) & (ii) of the Edexcel International A-level Biology specification and includes descriptions of the following barriers: skin the blood clotting process mucous membranes stomach acid vaginal acid and flora skin and gut flora wax in the ear canal There are clear links to topics 1, 2 and 3 in each of these barriers, so these are considered and discussed during each of the descriptions. For example, the presence of keratin in the cytoplasm of the skin cells allows the student knowledge of the properties of this fibrous protein to be checked. Other topics that are revisited during this lesson include protein structure, key terminology and the epithelium that lines the different parts of the airways. All of the exam-style questions have mark schemes that are embedded into the PowerPoint and a number of the tasks have been differentiated to allow students of differing abilities to access the work.
The cell cycle (OCR A-level Biology A)
GJHeducationGJHeducation

The cell cycle (OCR A-level Biology A)

(0)
This lesson describes the processes that take place during interphase, mitosis and cytokinesis and outlines how checkpoints regulate the cell cycle. The PowerPoint and accompanying resources have been designed to cover points 2.1.6 (a & b) of the OCR A-level Biology specification and prepares the students for the upcoming lessons on the main stages of mitosis and its significance in life cycles The students were introduced to the cell cycle at GCSE so this lesson has been planned to build on that knowledge and to emphasise that the M phase which includes mitosis (nuclear division) only occupies a small part of the cycle. The students will learn that interphase is the main stage and that this is split into three phases, G1, S and G2. A range of tasks which include exam-style questions, guided discussion points and quick quiz competitions are used to introduce key terms and values and to describe the main processes that occur in a very specific order. There is also a focus on the checkpoints, such as the restriction point that occurs before the S phase to ensure that the cell is ready for DNA replication. Extra time is taken to ensure that key terminology is included and understood, such as sister chromatid and centromere, and this focus helps to show how it is possible for genetically identical daughter cells to be formed at the end of the cycle. Important details of mitosis are introduced so students are ready for the next lesson, before the differences in cytokinesis in animal and plant cells are described.
Mitosis and its significance (OCR A-level Biology A)
GJHeducationGJHeducation

Mitosis and its significance (OCR A-level Biology A)

(0)
This fully-resourced lesson describes the main stages of mitosis and explains the significance of this type of nuclear division in life cycles. The PowerPoint and accompanying resources have been designed to cover points 2.1.6 (c & e) of the OCR A-level Biology A specification and make direct links to the previous lesson which covered the cell cycle Depending upon the exam board taken at GCSE, the knowledge and understanding of mitosis will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson so that existing errors are addressed and key points are emphasised throughout. Their understanding of interphase is challenged at the start of the lesson to ensure that they realise that it is identical pairs of sister chromatids that enter the M phase. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. There is a focus on the centrioles and the spindle fibres that they produce which contract to drag one chromatid from each pair in opposite directions to the poles of the cell. The remainder of the lesson is a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final quiz round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture.
The cell cycle, mitosis and meiosis (CIE A-level Biology)
GJHeducationGJHeducation

The cell cycle, mitosis and meiosis (CIE A-level Biology)

3 Resources
The three lessons included in this bundle describe the key events of the mitotic and meiotic cell cycles and cover the following points as detailed in topics 5 and 16 of the CIE A-level Biology specification: Topic 5: The mitotic cell cycle Explain the importance of mitosis in the production of genetically identical cells, growth, cell replacement, repair of tissues and asexual reproduction Outline the cell cycle, including interphase, mitosis and cytokinesis The behaviour of chromosomes in plant and animal cells during the mitotic cell cycle Topic 16: Inherited change Explain what is meant by a pair of homologous chromosomes The behaviour of chromosomes in plant and animal cells during meiosis Explain how crossing over and random assortment of homologous chromosomes during meiosis and random fusion of gametes at fertilisation lead to genetic variation Each lesson is fully-resourced and the wide range of tasks found in the PowerPoint and the accompanying resources will check on current understanding and prior knowledge and engage the students with guided discussion points and quiz competitions. If you would like to sample the quality of lessons in this bundle, then download the interphase, mitosis and cytokinesis lesson as this has been uploaded for free
Topic 16: Inherited change (CIE A-level Biology)
GJHeducationGJHeducation

Topic 16: Inherited change (CIE A-level Biology)

10 Resources
Meiosis, genetic inheritance and the control of gene expression are some of the harder topics on this A-level Biology course and all three are covered in topic 16 (Inherited change) of the CIE A-level Biology specification. The 10 lessons included in this bundle have been planned at length and contain a wide range of tasks that cover the detailed content whilst checking on understanding and key terms and values are introduced through engaging quiz competitions. The following topic 16 specification points are covered by these lessons: Topic 16.1 The meaning of a homologous pair of chromosomes The behaviour of chromosomes in animal and plant cells during meiosis Genetic variation is caused by crossing over, random assortment and the random fusion of gametes at fertilisation Topic 16.2 The meaning of key genetic terms Using genetic diagrams to solve problems involving mohohybrid and dihybrid crosses, including those involving autosomal linkage, sex linkage, codominance, multiple alleles and gene interactions Use the chi-squared test to test the significance of differences between observed and expected results Gene mutations occur by substitution, deletion and insertion and may affect the phenotype Topic 16.3 The genetic control of protein production in a prokaryote as shown by the lac operon The function of transcription factors in gene expression in eukaryotes Gibberellins and DELLA protein repressors If you would like to sample the quality of the lessons included in this bundle, then download the autosomal linkage and chi-squared test lessons as these have been uploaded for free
Enzymes, biological membranes & cell division (OCR A-level Biology A)
GJHeducationGJHeducation

Enzymes, biological membranes & cell division (OCR A-level Biology A)

13 Resources
This lesson bundle has been formed from the 13 detailed lesson PowerPoints and their accompanying resources that have been uploaded to cover a lot of the content in modules 2.1.4, 2.1.5 and 2.1.6 of the OCR A-level Biology A specification. Each lesson contains a wide range of tasks, which include exam-style questions (with mark schemes), guided discussion points, and quick quiz competitions, that will engage and motivate the students whilst covering the following specification points: Module 2.1.4: Enzymes The role of enzymes in catalysing reactions that affect metabolism at a cellular and whole organism level The role of enzymes in catalysing both intracellular and extracellular reactions The mechanism of enzyme action The effect of pH on enzyme activity The effect of temperature on enzyme activity The calculation of the temperature coefficient The effect of enzyme and substrate concentration on enzyme activity The need for coenzymes, cofactors and prosthetic groups in some enzyme-controlled reactions Module 2.1.5: Biological membranes The fluid mosaic model of membrane structure and the roles of its components Simple and facilitated diffusion as forms of passive transport Active transport, endocytosis and exocytosis as processes requiring ATP as an immediate source of energy The movement of water across membranes by osmosis and the effects that solutions of different water potential can have on plant and animal cells Module 2.1.6: Cell division, cell diversity and cellular organisation The cell cycle How the cell cycle is regulated The main stages of mitosis The significance of mitosis in life cycles The significance of meiosis in life cycles The main stages of meiosis How cells of multicellular organisms are specialised for particular functions The organisation of cells into tissues, organs and organ systems The production of erythrocytes and neutrophils from stem cells in bone marrow If you would like to sample the quality of the lessons in this bundle, then download the following lessons as they have been uploaded for free: The roles of enzymes and mechanism of action Simple and facilitated diffusion Cell specialisation and organisation