Hero image

516Uploads

198k+Views

106k+Downloads

Volcano Science experiment
IETEducationIETEducation

Volcano Science experiment

(0)
In this fun STEM activity, learners will make an erupting volcano science experiment using sodium bicarbonate and vinegar. This activity can be used as a main lesson activity to teach learners about chemical reactions, which are processes that change one or more substances into different substances. This science experiment can also explain foams, which are liquids or solids containing gas bubbles. Activity: Erupting volcano experiment This activity is one of a set of free STEM resources designed to help learners use seasonal themes to support the delivery of key topics in Design and Technology, Science, and Mathematics (STEM). This resource is part of a group for the Summer and can be used in school or at home. It involves making a model of an erupting volcano using baking soda and vinegar. When sodium bicarbonate and vinegar are mixed, they react to produce carbon dioxide gas. This gas is what causes the foaming mixture and the eventual dissolution of the solid. The new liquid solution that is produced is relatively safe, but it is important to avoid getting it in your eyes or on your clothes. Safety glasses should be worn if required by the school’s risk assessment. The lava produced can be disposed of by washing it down the sink with plenty of water. How long will this activity take to complete? This activity will take about 40-65 minutes to complete. Teachers can download the activity sheet below for a detailed lesson plan. Those completing the activity at home can download the family activity for a step-by-step guide on making an erupting volcano at home. The engineering context Engineers use chemical reactions to solve a variety of problems. For example, rocket engineers mix fuel and oxidiser to create a reaction that produces thrust, propelling the rocket into space. Suggested learning outcomes By the end of this activity, students will be able to make an erupting volcano using bicarbonate and vinegar, and they will understand that a reaction is when one or more substances are changed to a different substance. Download the free activity sheet for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Making a pinhole camera
IETEducationIETEducation

Making a pinhole camera

(0)
With our history of design KS2 lesson plan teaching resource, learners will make a pinhole camera inspired by the early photography of the Victorian era. Inspired by the theme of the Victorians, this activity supports the teaching of design and technology in context by making a pinhole camera based on early Victorian photography technology. In this classroom project learners will learn about early camera obscuras developed during the Victorian era. They will then make their own pinhole camera from a small shoebox, based on this early technology. Finally, they will test their camera and observe how it works. This teaching resource activity could be used as a main lesson activity to teach learners basic marking out and model making skills. It could also be used as part of a wider scheme of learning focussing on the history of design, technology and engineering, alongside other Victorian-themed IET resources. We’ve created this teaching resource design activity to support the delivery of key topics within science, history, design & technology (D&T) and engineering. Activity: Make a pinhole camera inspired by the early photography of the Victorian era Learners will discuss the origins of cameras and photography in Britain and the United Kingdom including the fact that in Victorian times many women took up taking photos as a hobby. Learns will then make their own pinhole camera and test it by going into a dark room, turning on a lamp and pointing the camera towards it. Tools/supplies needed: Cardboard box or shoebox Wax paper Parcel tape Craft knife Scissors Pin to make the pinhole Pencil and ruler Follow our step-by-step guide to make a pinhole camera The Engineering Context Understanding about the history of engineering and design helps engineers to learn from past successes and mistakes. For example, learning about early photography us to understand the science behind these ideas and how this can be used and developed to make better products in future. Suggested learning outcomes This resource combines Science, Design and Technology, Maths and Engineering with History, with the aim that the learners will know what is meant by the Victorian era and the dates it covered, be able to make and test a pinhole camera and be able to explain how the pinhole camera works. Download our activity sheet and other teaching resources for free! All classroom activity sheets and supporting teaching resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Please do share your highlights with us @IETeducation.
Build a balloon race car
IETEducationIETEducation

Build a balloon race car

(0)
In this fun activity for KS2, students will make balloon race cars from plastic construction blocks, such as LEGO®. Using balloons to power their vehicles, they will measure their speed over a set distance. This activity can be used as a main lesson activity to introduce students to the forces that cause movement or pneumatics. Activity: Build a LEGO balloon race car This resource is part of a set designed to help learners develop their knowledge and skills in Design & Technology, Engineering, Science, and Mathematics (STEM) using summer themes. This resource can be used in school or at home and involves building balloon-powered cars from plastic construction blocks. When making their balloon race car, students can be encouraged to use as many wheels as they want (3, 4, 6, or 8 have all been used effectively). They can also add any additional features they want for creativity, but keep in mind that these may slow the vehicle down. This activity could be carried out individually; however, the speed measurement should ideally be carried out in pairs or small groups. How long will this activity take to complete? This activity will take about 40-60 minutes to complete. The engineering context Space rockets and jet engines use the force of gas expelled from the vehicle to move it. This is called thrust. The faster the gas is expelled, the greater the thrust, and the faster the vehicle will move. Calculating the speed is important for almost all powered vehicles, from family cars to Formula 1 racers to space rockets. The speed of a vehicle determines how much thrust is required to move it and how long it will take to reach its destination. Suggested learning outcomes By the end of this activity, students will be able to build a moving car using plastic construction blocks, they will be able to accurately measure the time taken by an activity, and they will have learned a simple way to calculate speed. Download the free activity sheet for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How to make a Leonardo da Vinci bridge
IETEducationIETEducation

How to make a Leonardo da Vinci bridge

(0)
In this engaging design and technology project for KS2, students will build a model of the Leonardo da Vinci bridge where the parts are not joined together… This activity will teach learners about the use of simple construction techniques as they assemble a working, load-bearing bridge. The bridge can then be tested to destruction, which can help learners understand the forces that act on bridges and how to design them to be strong and stable. This activity can be used as a main lesson activity or as one of several activities within a wider scheme of learning about structures and Design for Living. It can be adapted to different age groups and abilities and can be used to teach a variety of concepts, such as forces, structures, and materials. Activity: How to make a Leonardo da Vinci bridge This resource is part of a set designed to help learners use seasonal themes to support the delivery of key topics in Design and Technology and Engineering. This resource is part of a group for the Summer and can be used in school or at home. It involves building a load-bearing bridge structure made up of simple members without any joining methods. This activity is aimed at the high end of Key Stage 2 and should be carried out in pairs or small groups, as a minimum of two pairs of hands are needed, along with some dexterity. How long will this activity take to complete? This activity will take about 60-90 minutes to complete. Teachers can download the activity sheet below for a detailed lesson plan. Parents can download the family activity for a step-by-step guide on how to help their children build a Leonardo Da Vinci bridge at home. The engineering context Using scale models is a development tool used in many areas of Engineering. Suggested learning outcomes By the end of this activity, students will understand how forces can act on parts of a structure to make it stand without extra support or joining methods, and they will look at the engineering work of Leonardo da Vinci. Download the free activity sheet below! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Light bulb experiment
IETEducationIETEducation

Light bulb experiment

(0)
With our science and design and technology KS2 lesson plan teaching resource, learners will perform an experiment to learn how filament light bulbs and basic electricity works. Inspired by the theme of the Victorians, this activity supports the teaching of design and technology in context by looking at the key events that defined the Victorian era, and how they have influenced engineering developments and society today. In this classroom activity learners will learn about the Victorian era and the changes to how people lived and worked during this time. They will learn about how Thomas Edison invented the first practical light bulb before building a simple light bulb circuit to investigate how it works. This teaching resource activity could be used as a main lesson activity to teach learners about the influence of historical events on engineering and society as a whole. It could also be used as part of a wider scheme of learning focusing on the history of design, technology and engineering, alongside other Victorian themed IET resources. We’ve created this teaching resource design activity to support the delivery of key topics within science, history, design & technology (D&T) and engineering. Activity: Learn about how filament light bulbs and basic electricity works Learners will discuss what the Victorian era was, when it occurred and why it was such an important period of time. They will learn about Thomas Edison’s light bulb and then build a bulb circuit and prove that it works. Tools/supplies needed: AA battery and holder 1.5 V lamp and holder Red crocodile clip Black crocodile clip Pens and pencils Lined paper The Engineering Context Understanding about the history of engineering and design helps engineers to learn from past successes and mistakes. For example, learning about electric lighting helps us to understand the science behind these ideas and how this can be used and developed to make better products in future. Suggested learning outcomes This resource combines Science, Design and Technology and Engineering with History, with the aim that the learners will be able to make a simple light bulb circuit and understand how a simple light bulb circuit works. Download our activity sheet and other teaching resources All classroom activity sheets and supporting teaching resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Please do share your highlights with us @IETeducation.
Discover mass, volume and density
IETEducationIETEducation

Discover mass, volume and density

(0)
In this exciting STEM activity, you will be given a variety of objects made from different materials. You will weigh each object and then measure its volume by immersing it in water. You will then use this information to calculate the density of each object. Activity to discover mass, volume and density This activity could be used as a main lesson to teach learners how to collect data through measurement and use number skills in a practical context. It could also be used as one of several activities within a wider scheme of learning, focusing on using maths and science to understand the properties of materials. How do you calculate density? Density = Mass / Volume What is the James Webb Space Telescope? The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy. The JWST is equipped with a suite of cutting-edge instruments that will allow it to study the universe in unprecedented detail. These instruments will help us better understand the Solar System, the formation of stars and planets, and the evolution of galaxies. The JWST is a revolutionary telescope that will blaze new trails in exploration. It is already making headlines with its first images, and it is sure to continue to amaze us for years to come. Suggested learning outcomes By the end of this activity, students will be able to compare materials based on their density, and they will be able to measure the volume of water and the weight of an object. Students will also learn how to calculate density, and they will be able to communicate measurements using appropriate SI units. The engineering context Space Engineers must have a good understanding of density when they load cargo onto a spacecraft. They need to know the density of the materials they are loading to ensure the rockets have enough power to allow the spacecraft to lift off. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How to make a periscope
IETEducationIETEducation

How to make a periscope

(0)
Investigate light and reflection by making a periscope. In this fun activity for kids, students will learn about the reflection of light in a mirror and make and use a periscope. Learners will have an opportunity to practice making a periscope from a card net. Nets are important as they allow 3D objects to be made when folded. This activity could be used as a starter or main activity to introduce light and build on experiences to explain how light travels. Alternatively, it could be used as a main lesson activity to teach learners how to use nets to make useable objects. It could also be used as one of several activities within a wider scheme of learning focusing on understanding the use of nets in maths. Activity: How to make a periscope This activity is one of a series of free STEM resources designed to allow learners to use Christmas themes to support the teaching of the primary National Curriculum. They are designed to support the delivery of key topics within science, design and technology and maths. This resource explores what happens when light reflects off a mirror or other reflective surface. Download the activity sheet below for a step-by-step guide on how to make your very own Pixie Periscope! The best results are obtained using small plastic mirrors (for example, cut from silver acrylic mirror sheets or extracted from toy compacts). If aluminium foil is used, care must be taken to ensure that this is very flat and the shiny side is used for the reflection; however, the observed image’s quality is likely still significantly reduced. Resources required Small plastic mirrors (best method) - if not available use aluminium foil (note: reflection is reduced) Scissors Card Glue sticks, sticky tape Double-sided sticky tape Rulers The engineering context Engineers need to understand how light travels and is reflected off surfaces; This is vital when engineers design rear-view mirrors for cars, periscopes for submarines and giant telescopes to look at the stars. Suggested learning outcomes By the end of this activity, students will be able to understand what happens when light is reflected off a mirror, and they will be able to make a periscope from a net. Download the free How to make a periscope activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
How polar animals keep warm
IETEducationIETEducation

How polar animals keep warm

(0)
A simple and fun science experiment about insulation, to see how blubber keeps penguins, whales, polar bears and seals warm in the North Pole. This is one of a series of free STEM resources designed to allow learners to use the theme of the festive period to develop their knowledge and skills in Design and Technology, Science, Mathematics and Engineering. In this activity, students will construct a straightforward model of a polar animal and use this to investigate how they keep themselves warm. They will understand how well a layer of blubber can insulate an animal and how the heat loss is reduced against an uninsulated animal. This is a versatile activity that could serve as a main lesson activity to teach about insulation and heat transfer. It could also be used as part of a wider scheme of learning, focusing on how animals react to the world around them. This activity could be carried out in pairs or small groups. The teacher presentation covers the main activity on slides 1 to 11, and the subsequent slides are extension work and links. Resources required An empty margarine tub A full margarine tub A large flat dish Warm water Cold water with ice A thermometer A stopwatch or smart watch timer Graph paper Pencils and differently coloured pencil crayons The engineering context Engineers must be able to investigate the natural world to understand how it works. This allows them to design solutions that benefit and learn from the environment, such as suits for divers that can keep them warm. Suggested learning outcomes By the end of this activity, students will be able to understand how polar animals keep warm in very cold conditions, they will be able to understand what blubber is and how it helps polar animals to survive, and they will be able to record experiment data using tables and graphs. Download the How polar animals keep warm activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Make an exploding snowman
IETEducationIETEducation

Make an exploding snowman

(0)
Students will learn about the effects of chemical reactions while making an exploding snowman in this fun, science experiment for kids. In this activity, students will use the theme of Christmas to make a card model of a snowman and mix the bicarbonate and vinegar to see the effects of the reaction. This is one of a series of free STEM resources designed to allow learners to use the theme of the Christmas period to develop their knowledge and skills in Science and Engineering. This activity could be used as a main lesson to teach learners about chemical reactions when one or more substances are changed to a different substance. It could also be used to explain foams as liquids or solids containing gas bubbles. Small 50g containers are best for this activity. The teacher may either bring in small plastic bottles or get the learners to bring in the bottles/containers. Teachers should ensure that covers are placed on work surfaces, or trays are used to prevent spills and catch the exploding liquid. The products of the reaction are relatively safe, though caution should be taken not to get splashes in the eyes, and clothes should be protected. The exploding mixture produced can be disposed of by washing it down the sink with plenty of water. Equipment required A zip-lock bag (sandwich bag size is great to start off with) Permanent markers Baking soda White vinegar Kitchen roll The engineering context Engineers use chemical reactions to help solve a number of problems. For example, rocket engineers mix chemicals together to make a reaction that powers a space rocket. Suggested learning outcomes By the end of this activity, students will be able to make an exploding snowman using bicarbonate and vinegar, and they will be able to understand that a reaction is when one or more substances are changed to a different substance. Download the Make an exploding snowman activity sheet for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Parachuting presents
IETEducationIETEducation

Parachuting presents

(0)
How to make a toy parachute activity. In this Christmas STEM activity, kids will use items found at home to make two parachutes and test which one is faster. They will learn about gravity, air resistance and more. Download the STEM activity sheet for free. If you’re up for an extra activity, help our present find its way back to Santa’s sleigh through the maze. And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM or send them via email to IETEducation@theiet.org to be featured in our online gallery.
How does Santa's sleigh fly?
IETEducationIETEducation

How does Santa's sleigh fly?

(0)
In this fun and festive activity, students will explore drag, thrust, gravity and lift forces to design and craft their own sleigh for Santa. Download the How does Santa’s sleigh fly? activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please do share your sleigh designs with us @IETeducation! #SantaLovesSTEM.
Jingle bells density science experiment
IETEducationIETEducation

Jingle bells density science experiment

(0)
In this this fun Christmas STEM experiment, we see the effect that density has on objects and make some jingle bells dance! Download the STEM activity sheet below for free. If you’re up for an extra activity, help our jingle bell finds its way back to the Christmas tree in our maze. And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Create a Christmas mobile
IETEducationIETEducation

Create a Christmas mobile

(0)
Get creative with crafts this Christmas and build a beautiful mobile inspired by the winter holidays A versatile lesson for teaching about constructing robust structures and the principles of balance. It can be incorporated into a broader curriculum on design and technology, emphasising making and assembly skills. Learners will be encouraged to collect a variety of natural materials that they can use to craft a Christmas mobile. This homemade mobile will make a great sustainable Christmas decoration for the home or classroom. This is one of a series of free STEM resources designed to allow students to use the theme of the Christmas period to develop their knowledge and skills in Design and Technology, and Engineering. The IET Education resource: Homemade Christmas decoration can be combined with this activity to create one of the hanging ornaments. The time and resources required for this activity will vary depending on the types and quantities of decorations. We recommend using one of the following suggestions to make your mobile: Fir/pine cones - Cones that have been collected previously and allowed to dry out are the best. They take paint well if dry and can look effective with decoration. Keep the hanging loops long. Small fir trees - These are simple to construct. Clay star - This will be a heavy element for the mobile. The impact of different weights on the mobile should be considered. Bolts do not have to be used if not available. Pipe cleaner star - Learners may need additional assistance with measuring the length of the pipe cleaner to split it into five. Using natural materials will give a unique, designer effect, but shop-bought decorations can be mixed in if time is short. Suggested learning outcomes By the end of this activity, students will be able to understand what makes a structure strong, they will be able to understand the concept of balancing, and they will be able to make a strong, well-balanced and visually attractive Christmas mobile. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please do share your inspiring creative crafts with us @IETeducation! #SantaLovesSTEM. https://education.theiet.org/primary/teaching-resources/create-your-own-winter-mobile/
Make salt dough Christmas decorations
IETEducationIETEducation

Make salt dough Christmas decorations

(0)
In this Christmas STEM activity, kids can make their own decorations using salt dough, in any shape they like! They can even paint them and unlike normal baked goods, they will last a very long time. Baking is a great way for kids to learn about science and maths in a fun and rewarding way, so get your aprons on! Download the STEM activity sheet and watch our video for step-by-step instructions. If you’re up for an extra activity, help our ornament find its way back to the Christmas tree in our maze. And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Winter scavenger hunt
IETEducationIETEducation

Winter scavenger hunt

(0)
**This is a great outdoor activity for kids to learn about the change of seasons and the natural environment around them. ** The free printable activity sheets are provided for children aged 5 to 14. There is a wide variety of wildlife and plant life for kids to spot while wandering through the woodland or countryside looking for items to match the pictures. Along with the pictures, there are science questions and ideas for children to think about. This scavenger hunt helps children develop their scientific knowledge by encouraging them to observe and identify different species of plants, animals, and insects. This can help students learn about ecosystems, food chains, and animal adaptations, among other topics. It promotes gentle physical activity and fitness by encouraging children to walk while searching for items on their lists. It will give children the opportunity to learn about the science of winter, including animal adaptations, weather patterns, and seasonal changes. They are also a great way of fostering a sense of teamwork and collaboration as kids work together to find and collect all the items. The science context Winter scavenger hunts can create engaging and interactive learning experiences that encourage curiosity, observation skills, critical thinking, and a deeper understanding of scientific concepts. It allows children to become active participants in their own learning, igniting their passion for science and cultivating the next generation of scientific thinkers. Suggested learning outcomes By the end of the activity, kids will have gained a deeper appreciation for the natural world and the role that science plays in understanding it. The activity can also help to teach geography lessons by encouraging kids to explore different landscapes and geographical features, such as rocks and bodies of water. We have a choice of three different winter scavenger hunt games for you to download, for 3-6, 5-11 and 11-14 year olds. Each game asks a series of questions, so there is also a corresponding answer sheet to download. Make sure the participants wrap up warm! Going for a walk on or around Christmas? Please do share your pictures of what you find on your winter scavenger hunts with us on social media on Facebook and Twitter using our #SantaLovesSTEM hashtag. You can also send them via email to IETEducation@theiet.org to be featured in our online gallery.
Make a trap to detect Santa
IETEducationIETEducation

Make a trap to detect Santa

(0)
Try out this fun science experiment, designed for primary school students, to catch Santa as he delivers your presents by creating an electronic trap! The engineering context Engineers need to be able to understand how electrical circuits are drawn and communicated; This includes the use of circuit symbols to produce circuit diagrams and schematics. This knowledge could be used when investigating, designing or making electrical and electronic circuits in the future. What equipment will you need? A thin piece of sponge – a washing up sponge is great, but make sure it is completely dry, Scissors, Masking or sticky tape, Aluminium kitchen foil, 3 crocodile leads (you will need another 2 if you do the extension task), A 2 x AA battery pack, A 3V buzzer How to do it Step 1 - Cut a square of the thin sponge approximately 10cm x 10cm. In the centre, cut a hole approximately 4cm in diameter. ⚠ Be careful when using scissors. Always have an adult on standby in case you need help. Step 2 - Cut two pieces of aluminium foil slightly smaller than your piece of sponge. Step 3 - Using masking or sticky tape, tape one piece of aluminium foil to the top of the sponge and the other to the bottom. The tin foil pieces MUST NOT touch if the sponge is not pressed down but should once it is pressed. Step 4 - Attach one crocodile lead to the top piece of foil and one to the bottom piece. You have now built the pressure pad for your Electronic Santa Detector, but you need to put it in a circuit for something to happen. Follow the diagram in the activity sheet below to connect the components with your crocodile leads. When you gently press the centre, the buzzer should sound. Now all you need to do is leave it somewhere you think Santa will stand when he delivers your presents. Just inside your bedroom door, perhaps, or at the end of your bed with your stocking. When he steps on the pressure pad, the buzzer will sound and alert you to him being in the room. You might also want to disguise it so it is not noticeable. Santa is old and wise, and if he sees it, he will know not to step on it! Download the Make a trap to detect Santa activity sheet for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Insulator experiment
IETEducationIETEducation

Insulator experiment

(0)
Protect Santa’s packed lunch with this fun insulator experiment This activity can function as a fun science experiment for kids in which students will observe the effects of thermal energy on change of state. What equipment will you need? Ice cubes with a small Christmas toy frozen inside (cake decorations are ideal for this or any small Christmas toy/decoration), 5 different types of material, which could include bubble wrap, plastic bag, wool, cotton, foam, tin foil etc., Small containers big enough to put wrapped ice cubes in. How to do it Step 1 - Choose which materials you think will keep his lunch cold for the longest. Step 2 - Wrap up each ice cube singly, in one material each, being careful to have the same number of layers for each material. Put each wrapped ice cube in a container. Remember, we are trying to make this a fair test, so what else do you need to keep the same? Step 3 - Decide where to put your ice cubes and how often to check them. What signs will you look for to tell you which material works best? Step 4 - Why do you think some ice cubes are melting more quickly than others? Do you think the cold from the ice cube is getting out, or the warmth from the air is getting into the ice cube? Step 5 - Which material kept your ice cube frozen for the longest? When you have decided which material is best, design a lunchbox to keep Santa’s lunch cool this Christmas Eve. What is thermal energy? Materials melt because of heat, a form of energy (thermal energy). All objects are made up of particles which are in a constant state of motion. Cold objects have less thermal energy than warm objects and the particles which make them up will be moving much more slowly. If we put a cold object next to a warm object, they will exchange thermal energy until they achieve thermal equilibrium – and become the same. We can stop or slow down this energy exchange by using a thermal insulator. Good thermal insulators have very strong bonds to hold their particles in place, stopping the particles from moving around easily and transferring energy to other particles. Download the Insulator experiment activity sheet for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Light up Rudolph's nose
IETEducationIETEducation

Light up Rudolph's nose

(0)
In this Christmas STEM activity for kids, students will test a simple series electrical circuit in an attempt to make Rudolph’s nose light up. This experiment will encourage students to have fun with electronics and understand circuits. What equipment will you need? Rudolph template, Stiff piece of card the same size as the template, Block of wood, 2 crocodile leads, 1.5V or D size battery, A 2.5 bulb with holder, Sticky tape, Blu-tac How to do it Step 1 Please print off the Rudolph template and stick it onto a stiff piece of card. Step 2 Make a hole (large enough to put the bulb through) where the nose would be, keeping the bulb holder at the back. Tape the bulb holder to the cardboard to hold it in place. You can paint the bulb red with a felt tip pen or add some red acetate. Sweet wrappers work well for this! Step 3 Stick the block of wood to the bottom of the card so that the Rudolph template stands up. Step 4 Attach the crocodile leads to the metal part on each side of the bulb holder. Stick the battery down on top of the piece of wood at the back with a piece of Blu-tac. You are now ready. The science behind the experiment Electricity will only flow when there is a power source within a complete circuit of conductive material with no breaks. There is no need, at this stage, to explain what electricity is or how it works, but children can begin thinking about what electricity does. Encourage the children to look around the room to find other things which work on electricity. They could cut out pictures from magazines of things which work on electricity and then sort them into those which work on mains electricity and those which work on battery power. Download the Light up Rudolph’s nose activity sheet for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Make electric dough
IETEducationIETEducation

Make electric dough

(0)
In this fun science activity for kids, students will make play dough that can insulate or conduct electricity. Make colourful dough with salt and another with sugar to find out which one will work! Through this process they will learn about conductors and insulators. Students will also learn about ionic bonding. This is a resource that encourages learners to have fun with science. An activity sheet is available to download for free. We have also included a bonus wordsearch using terminology from the activity to promote sticky learning. Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM
Best Christmas wrapping paper experiment
IETEducationIETEducation

Best Christmas wrapping paper experiment

(0)
Evaluate strength and durability of materials that Santa could use as wrapping paper This fun and festive activity is suitable for 5-11-year-olds and will take approximately 1-2 hours to complete. What equipment will you need? At least six different types of wrapping paper. You can use more if you like (try and find ones which feel and look different, such as shiny metallic paper or tissue paper.), Some tape for wrapping, A large bin liner or a Christmas sack if you have one Five bricks/ large stones of equal size. (It works best if they aren’t perfectly smooth or round.) How to do it Step 1 – Wrap up each brick or stone with a different piece of wrapping paper. These will be your ‘presents’. Step 2 – Put them all in the sack together. Step 3 – Ask an adult to act as Santa and shake the sack for 30 seconds as though carrying it around. You could sing Christmas songs while you are doing it. Step 4 – Take each ‘present’ out and look at it carefully. Record any changes in the wrapping paper on a results sheet. These are your observations. Step 5 – Put them all back into the sack and get your helper to shake them again. Step 6 – Complete step 5 another three times (if your presents survive the shaking!). Record any changes each time. Once you have determined which paper would be best, you could write a letter (or even a poem) to Santa to let him know how you tested the paper and which paper you think he should use. You can also look at packaging materials to see which protects items delivered by courier or the post the best. For full instructions, download the worksheet and lesson plan for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.