Hero image

524Uploads

221k+Views

119k+Downloads

Design an astronauts menu
IETEducationIETEducation

Design an astronauts menu

(0)
Selecting and comparing foods for a spaceflight to the moon In this activity learners will make use of the theme of travelling to the moon to design a menu that is suitable for astronauts. They will experiment with different types of food and test their suitability for space travel. They will then decide what food astronauts eat in space and create a menu that includes breakfast, lunch and dinner for space travellers, and considering ready to eat food packages… And don’t forget the salt and pepper! The teacher will introduce the activity and the theme of lunar travel and exploration and finding out about food in space, before playing a video for students to watch. Teachers will then introduce the design brief and set students the task of designing an astronauts’ menu. This activity can be simplified (particularly for less able students) by providing partially completed menu ideas to guide learners; providing premeasured ingredients to reduce the chance of errors when designing the menu; and/or providing foods that are suitable rather than asking learners to bring examples in from home. As an extension students could design packaging for each of the food items in their menu and/or discuss ways of storing the packaged food on a spacecraft, so it is kept safe on the way to the moon. This activity is designed to take between 55-80 minutes. Tools/resources required Pens and pencils Zipper seal bags of all sizes Aluminium foil Plastic wrap Recyclable storage containers Plastic shopping bags Masking tape Markers Portion sizes of food for tasting The engineering context Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we eat and prepare food, how will we develop the facilities to live happy, healthy and fulfilling lives? Suggested learning outcomes By the end of this free resource students will be able to understand the main considerations when designing a menu for astronauts; know the types of food that are suitable for space travel and be able to test and develop ideas for a menu for astronauts going to the moon. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Make a terrarium to grow grass on the moon
IETEducationIETEducation

Make a terrarium to grow grass on the moon

(0)
Grow grass in a terrarium to use on a football pitch on the Moon In this activity learners will make use of the theme of football on the moon to make an experiment of terrarium, so that grass can be grown for a lunar football game. This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Science, Design & Technology and Engineering. This resource focusses on making a closed terrarium with glass jars to show how grass could be grown on the moon, therefore overcoming some of the external temperature issues of growing grass in this environment. The teacher will introduce the activity and the theme of travelling to the moon, before discussing the challenge with learners. Teachers can carry out demonstrations at stages throughout the lesson to show what is required and check that all learners understand and carry actions out in the correct order. This activity can be simplified (particularly for less able students) by providing pre-measured amounts of materials and marked jars for learners to fill to. As an extension students can discuss and experiment with the effects of rotating the jars. What would happen if this didn’t take place? Students could also have a go at identifying other plants that could be grown in the terrarium for use on the moon e.g. food plants. This activity is designed to take between 35-65 minutes plus growing time and of course, caring for your terrarium. Tools/resources required Clean jam jar and lid Activated charcoal Stones Soil Grass seed The engineering context Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit? How will we grow plants, grass and food? Suggested learning outcomes By the end of this free resource students will be able to understand the concept of living organisms surviving on the Moon; set up an experiment to grow grass in a terrarium and be able to evaluate the findings of the experiment. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Make a flood barrier system
IETEducationIETEducation

Make a flood barrier system

(0)
Design and make a circuit to detect an overflow from a river and raise a temporary barrier using Crumble This is one of a series of resources produced in association with Fairfield Control Systems that are designed to allow learners to use the theme of waterways to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on designing and making a programmable electronic system to control a flood barrier. This activity can be simplified (particularly for less able students) by providing a partially completed template for producing the systems block diagram; pre-download the example program onto the Crumble microcontroller boards; and/or provide a diagram to aid with system assembly. As an extension students could design a mechanical system to convert the rotary motion from the motor to the movement of a barrier; update the program to take account of this mechanical movement (e.g. the time needed to move the barrier); and/or add light or sound outputs to the system to warn people when the barrier is moving. This activity is designed to take between 70-110 minutes. Tools/resources required Crumble controller board and USB download cable Three red crocodile clips and three black crocodile clips Three AA batteries and battery pack Crumble motor Bowl of water for testing To make a moisture sensor: Copper tape Card Sticky tape Scissors The engineering context The waterways (including their protection, maintenance and control) is an excellent context to explore opportunities that working in the engineering industry presents. For example, designing and making control systems that help the waterways to work more effectively. Electrical, electronic and control engineers need to have knowledge, understanding and skills associated with circuit design and assembly, and the programming of electronic control systems. Suggested learning outcomes By the end of this free resource students will be able to design and make an electronic control system for a flood barrier; understand how block diagrams are used to represent systems; and be able to use programmable components to solve a real engineering problem. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
National Grid jigsaw
IETEducationIETEducation

National Grid jigsaw

(0)
Make a jigsaw that shows the main elements in power generation and transmission In this activity learners will make use of the theme of the National Grid to complete a labelled jigsaw of the main parts of the electricity distribution network. They will assemble the different pieces into an image of the National Grid network and use labelled cards to identify each part. This is one of a set of resources designed to allow learners to use practical methods to support the delivery of key topics within Design & Technology, Science, and Engineering. This resource, developed with the support of National Grid ESO, focusses on learners developing knowledge of the different parts of the National Grid by completing a jigsaw of it. National Grid ESO ensure that Great Britain has the essential energy it needs by ensuring supply meets demand every second of every day. The teacher will explain the purpose of the National Grid and how it works before setting the students with the task of completing the jigsaw and then reviewing responses and discussing outcomes on completion of the work. This activity can be simplified (particularly for less able students) by using the jigsaw template with the labels already added. As an extension students could try using the internet to identify the different methods used to generate electricity, and then discussing what the advantages and disadvantages are of each method. Students could also investigate what a transformer is used for and find out why it is needed. This activity is designed to take between 25-40 minutes. Tools/resources required Card for the jigsaw image and labels Laminating facilities (if the jigsaws are to be re-used with different classes) The engineering context It is important that all engineers understand how products and systems are powered. This includes how electricity is generated, transmitted and made available for us to use in our homes and businesses. Power engineering is a very important field which focusses on how energy is generated and transmitted. There are lots of well-paid and rewarding careers available in this area. Suggested learning outcomes By the end of this free resource students will be able to assemble a jigsaw of the National Grid and be able to identify each of the main parts. Students should also be able to describe the purpose of each stage of the National Grid network. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Make a pyramid
IETEducationIETEducation

Make a pyramid

(0)
**Make a pyramid out of paper and learn how to calculate its volume ** Students will understand how to make a pyramid out of paper in this fun activity for kids. Students will create both small and large pyramids. Students will learn about scale by comparing the large pyramids with the smaller pyramids. Following this, students will learn how to calculate the volume of the pyramids. This activity will test students’ maths abilities, as well as teach them historical facts about ancient Egypt. Resources and activity sheets are provided to support teachers. Activity info, teachers’ notes and curriculum links In this activity learners will learn about 3D structures within a graphical project. Learners will have an opportunity to use a net to make pyramids of different sizes. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery. Downloadable content Make a pyramid activity Make a pyramid presentation Make a pyramid handout Tools/resources required Glue sticks Paper Rulers Scissors Calculators Sticky tack (optional) The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Make an Egyptian pasta necklace
IETEducationIETEducation

Make an Egyptian pasta necklace

(0)
Learn how to use pasta to make an item of jewellery inspired by the ancient Egyptians This activity for kids will teach students how to make an item of jewellery out of pasta inspired by ancient Egyptian jewellery. This activity will encourage students to design and create, as well as teach them historical facts about ancient Egypt. Resources are provided for teachers to help their students. Activity info, teachers’ notes and curriculum links In this activity learners will make an example of a necklace inspired by ancient Egyptian jewellery from easily sourced materials. There are related activities that involve making an alternative form of necklace and bracelets. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery. Downloadable content Make an Egyptian pasta necklace activity Make an Egyptian pasta necklace presentation Tools/resources required Pasta tubes (e.g. Penne) Ribbon Paint & brush Pom poms & sequins Paperclip Scissors The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Engineers can read your mind
IETEducationIETEducation

Engineers can read your mind

(1)
Explore the different technologies that engineers have developed to scan the brain The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics. Activity info, teachers’ notes and curriculum links This activity encourages students to think about new technologies and how difficult it is to predict their future development and application. The handout ‘Reading minds’ is an introduction on how the engineering field of biomedical signal processing is helping doctors understand the brain and treat patients. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. The ‘Mind Scanner’ challenge is an extension activity that allows students to do a bit of future gazing. The challenge looks at how future compact mind scanner technology could be used and by whom - considering both ethical and economic issues. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
2D paper modelling: The human body
IETEducationIETEducation

2D paper modelling: The human body

(0)
Identify parts of the human body with a 2D paper model This activity is one of a set of resources developed to support teaching the KS1 primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on developing an understanding of the basic parts of the human body through assembling a 2D paper model. By creating a captivating 2D paper model, students will have the opportunity to unleash their artistic talents and delve into the fundamental components that make up our remarkable anatomy. What you will need Thin card for printing the human body template to handout Erasers (or sticky tack or foam rubber) Safety scissors Split pins Coloured crayons/pencils Glue sticks. The engineering context Biomedical engineers assist individuals in reclaiming their lives following significant injuries; they can fabricate new body parts, such as arms and legs. Moreover, bioengineers can potentially restore hearing to people who are deaf or hard of hearing using electronic solutions. Suggested learning outcomes By the end of this activity, students will be able to identify basic parts of the human body, and they will be able to make a 2D paper model of the human body and name, draw and label the basic parts. Free to download! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Analyse energy consumption data
IETEducationIETEducation

Analyse energy consumption data

(0)
Use data on energy consumption to investigate how average values are calculated This scheme of work is designed to enable students to explore the relevant issues of energy cost and efficiency. Learners will use functional mathematics to understand that published facts and figures may not always be accurate, and that mathematical insights are necessary to scrutinise data. In this engaging activity for KS3, students will analyse data related to electricity consumption, with a focus on how average values are determined. Students will also evaluate the accuracy of published data sources and consider potential biases. This resource would work well as a main lesson in maths. This activity uses data for England. Students in Wales, Scotland, or Ireland may wish to research data for their areas. To begin the activity, prompt students to create a list of the various types of housing that individuals reside in. Which type of house is likely to require the most energy? Provide students with the Resource Sheet handout, which displays typical yearly electricity bills for different housing types. Students should collaborate in groups of 2-4 to review and analyse the data, and answer the questions included on the resource sheet. Students should be encouraged to reflect on the meaning of this data rather than just accepting it at face value – can they find raw figures and do the calculations to support the information shown? The engineering context Energy efficiency refers to the use of less energy to perform a specific task or achieve a particular outcome. In other words, it is the ability to accomplish the same level of output using less energy input. Energy efficiency can be achieved through the use of more efficient technologies, equipment, or processes, as well as through changes in behaviour and practices. It is an important concept in the context of sustainable development, as it helps to reduce energy consumption and greenhouse gas emissions, conserve natural resources, and lower energy costs. Examples of energy-efficient practices include using energy-saving light bulbs, improving building insulation, and upgrading to energy-efficient appliances. Suggested learning outcomes By the end of this activity students will understand that mathematics is used as a tool in a wide range of contexts, and they will be able to use mathematics to interpret the impact of energy costs on society. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
3D modelling
IETEducationIETEducation

3D modelling

(0)
In this design activity, students will produce a 3D model of a robot arm. It’s part of a series of activities that sees students designing and modelling the physical elements of a robot arm. This 3D modelling activity assumes that students have previously made a 2D model of a robot arm in the Build a robot arm activity (if they haven’t, they may benefit from trying the 2D modelling activity first!). This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT) and science. Activity: Designing and modelling a 3D robot arm In this hands-on activity, students will be divided into small teams and tasked with taking inspiration from their previously completed 2D models of a robot arm to construct a 3D model. This arm will then have to lift three identical objects between a “start” and “end” location. The arms will be judged on how accurately the items are transferred, the lack of damage to the items being moved, and the time needed to complete the moves. Students will need consider factors such as grip, hand operation, item protection, and structural rigidity (i.e., how do they stop the arm from bending?). Teams will have the opportunity to test, improve, and refine their designs based on constructive feedback provided by the class. The engineering context Understanding how to design and build a robotic arm will introduce your students to key concepts in mechanical engineering and automation technology. Robot arms are used in a wide variety of industrial applications, ranging from loading machines to assembling cars, welding parts together and spray-painting products. They are also used in delicate applications such as bomb disposal and repairing space craft while in orbit. Suggested learning outcomes By the end of the lesson students will be able to design and build a 3D model. They will also have developed their creative and problem-solving skills, teamwork abilities and a practical understanding of the workings of robot arms. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan and presentation below. Please do share your highlights with us @IETeducation.
Measuring boat speed - KS3 engineering
IETEducationIETEducation

Measuring boat speed - KS3 engineering

(0)
Time the journeys of different shaped boats and present the results This engaging engineering activity for KS3 considers displaying data from a practical investigation looking at the effect of streamlining a boats hull. Students will be asked to consider how this information can be represented effectively and use this to form conclusions. The reliability of their results will then be discussed. Activity Measuring boat speed Students will use the test rig, which can be found in the resources below, to test several different shaped boats. Students should measure the time taken for each boat to travel a set distance and record the results. Ask the students to discuss the fact that there is no measurable independent variable as it is very difficult to quantify the hull shape in terms of numbers. The students should ponder how they are going to represent these results graphically. If time is available, complete the investigation by repeating the tests. Discuss the sorts of errors that might occur in the collection of results. Learners will then plot their results into a bar graph. This could be used as part of an advertising campaign to sell the boat which could include design, bar chart, a brief conclusion and an explanation as to why the results are reliable. There is also an opportunity to use data logging equipment as well as light gates to further reduce errors in this engineering activity. As an extension, students could calculate speed (s=d/t), and the mean speed for each boat, taking into account the anomalous results. Students could consider what they could measure to draw a line graph and find the optimal hull design. If time is available, students could manufacture and test their own designs and include them within the analysis. This activity will take approximately 45 minutes. Tools/resources required The construction is a fairly simple activity and can be undertaken by your KS3 students (as an after school activity or by a technician) Boat objects Stop Watch Graph Paper Suggested learning outcomes By the end of this activity students will be able to explain when to use a bar chart and when they should be used to display categoric variables, they will be able to evaluate an experiment in terms of its reliability and precision and they will be able to apply scientific and mathematical understanding to an engineering context. All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Water conservation
IETEducationIETEducation

Water conservation

(0)
Compare water usage within the UK to that of other countries In this engaging activity students will examine the link between water usage at home and the number of people living in their household, as well as comparing the water usage within the UK to that of other countries. It involves estimating personal daily water usage, interpreting complex data, and understanding how different lifestyles impact water usage. It’s a great opportunity for students to apply their mathematical and analytical skills to real-world problems. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within maths, science and design & technology (DT). This lesson plan continues the theme of water usage developed in the Sewage Tunnels activity but can be delivered independently should the teacher wish. There is also a follow-on Water Consumption activity. Activity: Comparing water usage within the UK to that of other countries Students must estimate how much water they use each day and apply their mathematical understanding to interpret a wide range of complex data to develop their appreciation of why water usage is such an important issue. The resource ‘Water consumption’ is also available as an extension activity. Download our activity overview, presentation and worksheet for a detailed lesson plan for teaching students about water conservation. We also have a class quiz. The engineering context Students will learn how engineers use mathematical modelling to predict and address issues related to water usage and conservation. By demonstrating how engineering can be used to solve real-world problems, students will see the relevance and importance of their mathematical studies. Suggested learning outcomes Upon completion of this activity, students will have enhanced their ability to analyse and interpret a broad range of data. They will gain a deeper understanding of how mathematical modelling is used in real-world scenarios to predict outcomes and solve problems. Additionally, by reviewing, recreating, and possibly improving the mathematical information presented by a Water Board, students will significantly boost their mathematical understanding and application skills. Download our activity sheet for free! The lesson plan includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Build a simple communications device
IETEducationIETEducation

Build a simple communications device

(0)
Students build a communications device and develop a protocol to communicate with each other This is an engaging and practical activity in which students will work in small teams to investigate the necessity of developing standards and protocols for communication using a basic electrical circuit. Their objective is to build a basic communication device and establish communication between teams. Each team should receive a copy of the ‘Building the Communicator’ handout and proceed to assemble their circuits. This activity is a great way to introduce students to the history and practical use of telecommunication while also engaging their creativity and problem-solving skills. How long will this activity take? This activity will take approximately 45 minutes to complete. Tools/resources required Per team: One non-latching push to make switch Connecting leads One light bulb (3V approx) and holder One 3V power supply (best to use cells so that bulbs do not blow) Supply of crocodile clips The engineering context Telemedicine engineers are professionals who specialise in designing, developing, and implementing technological solutions for remote medical care. They utilise their expertise in engineering, software development, and medical equipment to create systems that enable patients to receive medical care remotely. Telemedicine engineers also work closely with healthcare providers to understand their needs and develop solutions that address their challenges. Telemedicine engineers play a critical role in expanding access to healthcare for patients in remote areas. They contribute to the development of cutting-edge technology that allows medical practitioners to deliver high-quality care to patients from a distance. Suggested learning outcomes By the end of this activity students will be able to build a simple electrical circuit, design a code for easy transmission of messages between two teams and explain why global protocols are required. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Sustainable dancefloors: Fun STEM activity
IETEducationIETEducation

Sustainable dancefloors: Fun STEM activity

(0)
Learn about dance floors that generate electricity and consider how output is linked to activity The engineers behind the Watt Nightclub in Rotterdam turn the energy created by clubbers on the dance-floor into power for the lighting. There’s even a giant battery to monitor the energy and encourage the crowd to dance even more. Doing your bit for the environment doesn’t have to be boring! This engaging STEM activity is perfect for KS3 students and gives them the opportunity to develop their understanding of graphs in an engineering context. Students will learn about dance floors that generate electricity and consider how output is linked to activity. There are a number of slides within the presentation that show different graphs and students are invited to develop their own descriptions to explain their shape. Discuss as a class what the amount of electricity is dependent upon (for example, the number of dancers, how energetically they dance). Also discuss how these variables can change, e.g., they can increase steadily, decrease steadily, or vary over time. Some students may raise the issue of the type of music being played. Popular, lively tracks are likely to get everyone on the floor, all dancing energetically, whereas a slower and/or less popular track immediately following will reduce the energy output (as people dance less energetically and/or a number of people go to get a drink, etc.). Suggested learning outcomes By the end of this free resource students will have an understanding of linear functions in practical problems and they will be able to construct linear functions from real-life problems and plot their corresponding graphs. They will also be able to discuss and interpret graphs modelling real-life situations. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Design a prototype step counter
IETEducationIETEducation

Design a prototype step counter

(0)
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons to create a working prototype of a step counter. Walking is an excellent form of exercise that most people can take part in. The average person walks 3000-4000 steps per day. The National Health Service in the UK has set a challenge for each person to walk 10,000 steps per day. This can be counted using a step counter or stepometer. In this unit of learning, learners will integrate a BBC micro:bit based programmable system into a complete and commercially viable step counter product, that will aid people taking part in this challenge. Activity info, teachers’ notes and curriculum links In this activity, learners will integrate a BBC micro:bit based programmable system into a working product prototype. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Testing pulley systems
IETEducationIETEducation

Testing pulley systems

(0)
Testing the operation of pulley systems and calculating their mechanical advantage This GCSE maths resource looks at how pulleys work and is fully-curriculum linked. Download the resource for free to teach KS4 pulleys to your class. What are the advantages of a pulley system? Mechanical systems allow us to perform tasks that would otherwise be very difficult, enabling us to lift objects that would otherwise be far too heavy to move. For example, cranes on building sites that move heavy materials. This GCSE mathematics resource focuses on testing pulley systems and calculating their mechanical advantage. Activity info, teachers’ notes and curriculum links An engaging activity in which students will will test and calculate the mechanical advantage of three different examples of simple pulley systems designed to lift loads. It will build knowledge and understanding of how pulley systems work, along with improving related numeracy skills. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Triangular numbers
IETEducationIETEducation

Triangular numbers

(0)
This maths activity uses triangular numbers to calculate the number of gifts in the 12 days of Christmas. In this festive maths activity, students will learn about triangular numbers and how, when a number sequence is added together, they can be drawn to make triangles as dots. They will also add together triangular numbers using a staircase and a formula to calculate any triangular number. This activity could be used as a main lesson activity to teach learners how to use addition and multiplication to solve practical problems. It could also be used as one of several activities within a wider scheme of learning, focusing on the use of maths to understand ratios and proportion. Activity: Triangular numbers This activity is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on the calculation of triangular numbers using the staircase method and the formula to calculate any triangular number n. We can use our maths knowledge to understand better how to solve problems involving addition and multiplication. As we handle money and make food for big parties of people, we learn how to use addition and multiplication in everyday life. How long will this activity take? This activity will take approximately 40-60 minutes to complete. Resources required Grid paper Pencils Erasers Rulers Calculators The engineering context Engineers need to know how many items are in a sequence. For example, production engineers in ice cream manufacturing need to know the number of double-scoop ice creams possible, given the number of flavours available. Triangular numbers are also used in a variety of other engineering calculations. For example, they can be used to calculate the number of steps in a staircase, the number of bricks in a wall, and the number of components in a circuit. Suggested learning outcomes By the end of this activity, students will know what a triangular number is, they will be able to calculate a triangular number using a staircase, and they will be able to calculate any triangular number (n) using a formula. Download the free Triangular numbers activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Ancient Greek mathematics
IETEducationIETEducation

Ancient Greek mathematics

(0)
Learn scale with ancient Greek mathematics In this engaging activity for kids inspired by the achievements of ancient Greece, students will discover how to create a scale drawing of an object using ancient Greek mathematics. This activity, which combines maths and history, will introduce students to the concept of scale and teach students facts about how the ancient Greeks have affected modern life. Resources for teachers are provided. And please do share your classroom learning highlights with us @IETeducation
Flood Defence Challenge
IETEducationIETEducation

Flood Defence Challenge

(0)
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own IET Faraday® Challenge Day. The challenge Students work in teams to design and make a prototype of a simple device, that will allow homeowners to remove water from their homes, during periods of flooding. About IET Faraday® Challenge Days IET Faraday® Challenge Days are designed for six teams of six students (36 students in total) aged 12-13 years (year 8, and equivalent) and is carried out over one school day. A cross-curricular Science, Design and Technology, Engineering and Mathematics (STEM) activity day that encourages the development of students’ problem solving, team working and communication skills. Students achieve a better understanding of what engineering is and the science, maths and technology elements within engineering, leading to increased engagement in science or technology lessons afterwards. The challenge has been specifically designed to give students the opportunity to be creative in their solutions and to succeed, independent of their level of ability. This activity is therefore suitable for a range of different ability levels. All online resources are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs. You can stream and download the related films for free by clicking on the link in the related resources section. Please share your classroom learning highlights with us @IETeducation To view the additional supporting videos, please visit the IET Education website.