Hero image

516Uploads

198k+Views

106k+Downloads

How to make a simple electronic switch
IETEducationIETEducation

How to make a simple electronic switch

(0)
Learn how electronic switches work and assemble a variety of different switches in this fun and engaging STEM activity! This is a free resource that could be used in KS2 as an extension to an activity to introduce circuits, or to support a design and make project, such as the doorbell activity or adding a motor to the ‘cardboard cars’ activity. This activity will take approximately 70-90 minutes. Tools/resources required Projector/Whiteboard 4 x AA batteries in holder Buzzers (e.g. Miniature Electronic Buzzer 6v) 3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used; no wires will be needed if the buzzer also has attached wires) 4 metal split pin fasteners and 1 paper clip per pupil A5 pieces of card (can be cut to A6 for backing of the paper clip switch and 2 x A7 for the folded and foil switch) Metal foil Sticky tape or electrical insulation tape. (Potential sources for the components include Rapid or TTS Group) If needed: Wire cutters/strippers Optional: Hole punches (ideally single hole punches) Scissors Pre-made models of each switch, for demonstration Electronic switches An electrical circuit is a group of components that are connected together, typically using wires. The wires are usually copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e., have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches make a gap in the circuit to stop electricity flowing when they are open. There are a wide variety of different types of switches that can be used. The engineering context Circuits form the basis of all electrical equipment, ranging from lighting in homes to televisions and computers. Suggested learning outcomes By the end of this activity students will be able to construct an electrical switch, they will have an understanding that a complete circuit is required for electricity to flow, and they will be able to construct an electrical circuit. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Easter diorama box project
IETEducationIETEducation

Easter diorama box project

(0)
A graphics project that makes an Easter box diorama In this Easter engineering activity for secondary school students’, learners will use net templates to make card parts to allow them to assemble an Easter box diorama. This is a lesson plan for an engaging Easter box diorama project. This could be used as a main lesson activity, to teach learners how to use nets to make useable objects. It could also be used as one of several activities within a wider scheme of learning focussing on the use of maths to understand the use of nets. Alternatively, it can be used as a part of a wider group of resources that use the Easter theme to build knowledge and skills in Design and Technology. This graphics project is one of a series of free resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resources focusses on the making of Easter boxes using folded card. Nets are used for the box and egg designs. Nets are important as they allow 3D objects to be made when folded. Download the free activity sheet for more detailed instructions and for optional extension work. Also included is a fun bonus wordsearch with words used in the activity to enhance learning. This exercise will take approximately 50 – 80 minutes. Tools/resources required Projector/whiteboard Scissors Glue sticks Card Rulers The engineering context Understanding how nets are used is considered in the making of products and is an important part of the new GCSE courses in Design and Technology and Engineering. Engineers are required to use mathematics knowledge and skills regularly as part of their everyday job. It is therefore essential that they are able to use nets to allow them to make scale models of buildings and other structures. Suggested learning outcomes By the end of this fun graphic design project students will know how nets are used to make Easter boxes. They will also be able to fold and glue parts together to make an Easter diorama box. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Build an Easter bunny basket
IETEducationIETEducation

Build an Easter bunny basket

(0)
Making structures from card and assembling these into baskets In this hands-on STEM activity for kids, students will learn about 3D structures within a graphics projects. The project will involve using templates to help them cut out the parts for an Easter bunny basket. This fun exercise is aimed at primary school children and could be used as a main lesson activity, to teach learners about simple structures made from separate parts. This is one of a set of free resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on building an Easter bunny-shaped basket. The teacher will first print the activity sheet, which can be downloaded below, onto thin card and distribute to the learners. Learners can then follow these steps to build their own DIY Easter bunny basket. Once learners have completed each step for themselves, the teacher can explain how nets are used to make objects and how separate parts are used to make a larger structure. Learners will share their completed bunny baskets with the class. What do you think went well? What could be improved? This activity will take approximately 50 – 80 minutes to complete. Tools/resources required Glue sticks Card Scissors Cotton wool (for the bunny tails) The engineering context Engineers use nets and card to allow them to make scale 3D models of buildings and other structures, as well as packaging for products. Suggested learning outcomes By the end of this STEM challenge learners will be able to understand how structures are made using separate parts and they will be able to make and assemble a bunny basket structure from card parts. Download the free Build an Easter Bunny Basket activity sheet below! Also includes a bonus wordsearch to enhance sticky learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Build a bunny craft activity
IETEducationIETEducation

Build a bunny craft activity

(0)
Making structures from card strips and assembling these into animal forms In this fun Easter themed STEM activity for kids, students will learn about 3D structures within a graphical project. Learners will build a bunny using card strips from a template. This free resource, aimed at primary school children, could be used as a main lesson activity, to teach learners about simple structures made from separate parts. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on building a card structure, to make a bunny. The teacher will first print the free activity sheet, which can be found below, onto thin card and distribute to the learners. Learners can then follow this step-by-step guide to build their own DIY Easter bunny. If time allows learners could decorate their Easter bunnies. They will then share their completed bunnies with the class. This activity will take approximately 50 – 80 minutes. Tools/resources required Build a bunny handout Scissors Glue Colouring pencils/pens (optional to colour in your bunny before assembly) The engineering context Engineers use nets and card to allow them to make scaled 3D models of buildings and other structures, as well as packaging for products. Suggested learning outcomes By the end of this STEM challenge learners will be able to understand how structures are made using separate parts and they will be able to make and assemble a bunny structure from card strips. Download the free Build a bunny activity sheet below! Also includes a bonus worksearch to enhance sticky learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Make a papier mâché Easter egg
IETEducationIETEducation

Make a papier mâché Easter egg

(0)
Learn how to make papier mâché Easter eggs with balloons in this fun STEM activity for kids In this fun Easter STEM activity for kids, students will learn how to use papier mâché and a balloon to make and decorate an Easter egg that they can use as part of their celebrations. This activity is aimed at primary school students and could be used as a main lesson activity to teach learners about making techniques, design creativity and the use of colour, or part of a wider scheme of learning covering graphics-based techniques. There are also potential curriculum links with the Art department and STEAM based activities. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on making and decorating a papier mâché Easter egg with different coloured paints. Follow this step-by-step guide to make your very own papier mâché Easter egg. Download our free activity sheet for more detailed instructions, teachers notes and optional extension work. Also included is a fun bonus maze activity. Tools/resources required A balloon Newspaper and white paper Wallpaper paste (flour and water or PVA glue can be used instead) A small plastic pot Scissors Different coloured paints and other materials for decorating, such as foam letters and card borders Suggested learning outcomes By the end of this Easter STEM challenge learners will be able to use papier mâché and a balloon to make an Easter egg model. They will also be able to use colour to decorate a papier mâché based egg and they will be able to show creativity when designing and making products. The engineering context Engineers make product models to test ideas and see how they will work. Papier mâché can be used to make 3D models. Its other applications include masks for the theatre, structures for carnival floats and even disposable fuel tanks for aircrafts! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Make a DIY Easter Bunny
IETEducationIETEducation

Make a DIY Easter Bunny

(0)
Making an Easter bunny puppet with moving arms and legs In this activity students will learn about simple mechanisms using linkages made from paper products. Learners will have an opportunity to use a template to help them cut out the parts for a cardboard Easter bouncing bunny. This fun STEM challenge aimed at primary school children could be used as a main lesson activity, to teach learners about linkages. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on building a card structure, which uses linkages to make the limbs of a bunny move. Follow this step-by-step guide to make your own Easter bouncing bunny. Learners will complete each step for themselves. Once everyone has made their bouncing bunny, the teacher will discuss the results of the activity with learners. The teacher will also explain how linkages are used to make objects move. Download the free activity sheet for more detailed instructions, teachers notes and for optional extension work. Also includes a fun bonus activity to enhance sticky learning. This exercise will take approximately 50 – 80 minutes. Tools/resources required Glue sticks Card or cardboard Scissors String Brass fasteners Pencils Erasers/sticky tack Elastic bands The engineering context Engineers must have a good understanding of mechanisms. Mechanisms are used in every machine that has moving parts, from trains, cars, and washing machines to a space rocket. Suggested learning outcomes By the end of this activity students should be able to understand how to use a linkage to create movement and they will be able to make and assemble a bouncing bunny with moving arms and legs. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Making a vehicle for an egg race
IETEducationIETEducation

Making a vehicle for an egg race

(0)
Designing and making a vehicle to transport an egg in a race In this Easter STEM activity students will design and make a car that can safely carry an egg in a racing event and compete against other designs. This challenge is aimed at secondary school students and could be used as a main lesson activity to teach learners about modelling and prototyping, or as part of a wider scheme of learning covering manufacturing processes and techniques. It could also be used as part of an introduction to aerodynamics. This is one of a set of free resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology, Engineering and Mathematics. This resource focuses on designing and making a vehicle to transport an egg in a racing event. Download our free activity sheet to see an example of how an egg racer could be made. This could be made to assist the development of workable ideas. This could be used to guide lower ability learners or for learners who produce a design idea that would otherwise not be practical to make. The final vehicles need to be placed on a slight slope for the race. For example, this could be a natural slope, or a plank or board rested on the table. As an alternative to a direct race, the evaluation could be based on the time taken to go down the ramp (which could allow the integration of maths, for example to calculate the average velocity) or determining which vehicle continues furthest along the floor after coming down the ramp. Tools/resources required Card Straws Wooden dowels or skewers with sharp points removed Wheels (wood or card) or plastic bottle tops Card tubes Masking tape Glue Glue guns if available Scissors Rules or rulers for measuring The engineering context Engineers make models and prototypes to test ideas and see how they will work. For example, they will put a model of a car in a wind tunnel to see how aerodynamic the design is. This helps to make designs that use the minimum amount of fuel. Suggested learning outcomes By the end of this fun school project students will be able to design and make a vehicle to transport an egg in a race and they will have an understanding of what is mean by ‘aerodynamics’. Download the free Make a Vehicle for an Egg Race activity sheets, including a bonus crossword using the words from the activity to enhance learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
KS1 Easter Maths: Count using eggs
IETEducationIETEducation

KS1 Easter Maths: Count using eggs

(0)
Link words and numbers and learn how to count forwards and backwards using eggs in this fun Easter maths activity for kids In this fun Easter STEM activity for kids, students will cut out eggs with numbers in words and shells with numbers in figures, then link the two ways of representing numbers. Learners will also have the opportunity to count and carry out some simple sums using the cut outs. This practical maths challenge could be used as a main lesson activity, to teach learners about numbers and counting. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within Mathematics and Design and Technology. This resource is aimed at learners in reception or early Key Stage 1 and focuses on developing knowledge of the words used to represent numbers. The teacher will first print the activity sheet onto thin card. Learners should then match the eggs and shells and put them in the correct sequence, either forwards or backwards. They could also use these to count forwards or backwards in multiples. As an optional extension, students could also use the eggs as number cards to carry out some sums. Cards with mathematical symbols are included at the end of the handout. These should be cut around the dotted line. If time permits, learners could decorate the eggs and shells. This activity should take approximately 40-60 minutes. Tools/resources required Handouts printed on this card Scissors Colouring pens/pencils Suggested learning outcomes By the end of this Easter maths activity learners will know how numbers are represented by words and they will be able to count forwards and backwards in numbers and multiples up to 100. The engineering context An understanding of numbers is vital for engineers who need to solve lots of interesting problems. For example, they need to know the sizes to make products and communicate these to other people. Electronic engineers use countdown timers to let motorists know when a traffic light will change from red to green, so that that motorists can drive off safely. Download the free Count using eggs activity sheet. Also includes a bonus maze activity. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Make an amazing bunny pop up card
IETEducationIETEducation

Make an amazing bunny pop up card

(0)
Learn about 3D structures and make a bunny pop up card in this fun Easter STEM activity for kids In this fun STEM activity for kids, students will learn about graphic products and use templates to help them cut out the parts for a homemade Easter card. This activity is aimed at primary school children and could be used as a main lesson activity, to teach learners about the use of templates. This is one of a set of resources designed to allow students to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on making a graphics project, in this case an Easter pop-up bunny card. The teacher will first print the activity sheet, which can be downloaded below, onto thin card and distribute to the learners. Learners can then follow these steps to make their own homemade Easter bunny pop-up card. Once learners have completed each step for themselves, the teacher can explain why templates are used to make objects and how separate parts are used to make a larger structure. Learners will share their completed Easter pop-up cards with the class. What do you think went well? What could be improved? This activity will take approximately 50 – 80 minutes to complete. Tools/resources required Glue sticks Card (various colours) Scissors Coloured paper The engineering context Engineers use nets and card to allow them to make scale 3D models of buildings and other structures, as well as packaging for products. Suggested learning outcomes By the end of this Easter STEM challenge learners will be able to make and assemble an Easter pop-up card from separate parts. Download the free Make an amazing Easter pop up card activity sheet. Also included is a bonus wordsearch to enhance sticky learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Countdown numbers KS1 maths game
IETEducationIETEducation

Countdown numbers KS1 maths game

(0)
Using maths skills to calculate numbers The rules for the game and the selection of mathematical operations used can be adjusted to suit the level of the learners. The teacher should enter the five selected numbers in the white boxes of the spreadsheet. An appropriate result should be selected from the gold boxes. When the time is up, the teacher may want the learners to share their answers on a wipeable board or verbally as time allows. Activity introduction This resource is part of a collection developed to aid in teaching the primary national curriculum. These resources are specifically designed to facilitate the instruction of fundamental topics in mathematics and science. This resource focuses on solving number problems using a spreadsheet inspired by the Countdown numbers game. It can be employed as a complete lesson, as outlined in the activity sheet, or as an introductory activity in other mathematics lessons. This activity could be carried out with pupils working individually or in small groups. The spreadsheet associated with this activity should be open on the teacher’s laptop or tablet. Learners should not be able to see this. The engineering context Engineers must have a solid grasp of number combinations and operations when tackling various fascinating challenges. For instance, engineers designing bridges must perform calculations to ensure their structural integrity. In contrast, those responsible for circuit design in mobile phones must compute the values of individual components required for functionality. Suggested learning outcomes By the end of this activity, students will be able to solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why. They will also be able to solve problems using multiplication and division. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Rocket countdown maths game
IETEducationIETEducation

Rocket countdown maths game

(0)
Practice counting backwards from 50 in this fun rocket countdown maths game for KS1! In this engaging maths game, students will learn to countdown backwards using different steps, i.e. 1s, 2s, 3s, 5s and 10s. This resource will prepare learners to count to and across to 50, forwards and backwards, beginning with zero or from any given number. Learners will release balloon ‘rockets’ to enhance engagement when each countdown reaches zero. This activity could be used as a main lesson to teach learners how to count backwards using the prompts in the teacher presentation below. Activity: Racket countdown maths game This activity is one of a set of resources developed with the theme of the James Webb Space Telescope (JWST) to support the teaching of the primary national curriculum. These resources are designed to support the delivery of key topics within maths and science. This resource focuses on numbers and the ability to count backwards to zero using different number intervals. What is the James Webb Space Telescope? The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy. The JWST is equipped with a suite of cutting-edge instruments that will allow it to study the universe in unprecedented detail. These instruments will help us better understand the Solar System, the formation of stars and planets, and the evolution of galaxies. The JWST is a revolutionary telescope that will blaze new trails in exploration. It is already making headlines with its first images, and it is sure to continue to amaze us for years to come. Suggested learning outcomes By the end of this activity, students will be able to count backwards from numbers up to 50, and they will be able to count backwards in steps of 1s, 2s, 3s, 5s and 10s. The engineering context A grasp of number combinations and mathematical operations is essential for engineers solving various intriguing challenges. For instance, electronic engineers use countdown timers to inform drivers about the transition of a traffic light from red to green, ensuring a safe departure for motorists. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Solar power in space
IETEducationIETEducation

Solar power in space

(0)
Investigate the photovoltaic effect and manufacture a simple circuit in this free activity. In this engaging task, students will explore the photovoltaic effect by creating a simple circuit and incorporating it into a product—specifically, a solar-powered version of the well-known jitterbug project called a “solarbug” This activity can serve as a targeted hands-on exercise for subjects like Electronics or Product Design under the umbrella of Design & Technology. Alternatively, it could be included as a component of a study on the application of solar energy in the field of science. Activity: Solar power in space Photovoltaic cells, also known as solar cells, are used as a power source by the James Webb Space Telescope (JWST). This activity is one of a set of STEM resources developed with the theme of the James Webb Space Telescope to support the teaching of Science, Design & Technology, Engineering and Mathematics. The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of increasingly complex electronic circuits. What is the James Webb Space Telescope? The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy. The JWST is equipped with a suite of cutting-edge instruments that will allow it to study the universe in unprecedented detail. These instruments will help us better understand the Solar System, the formation of stars and planets, and the evolution of galaxies. The JWST is a revolutionary telescope that will blaze new trails in exploration. It is already making headlines with its first images, and it is sure to continue to amaze us for years to come. Suggested learning outcomes By the end of this activity, students will understand how photovoltaic cells work, how they can be used in a circuit and how to make a simple circuit. The engineering context The James Webb Space Telescope uses photovoltaic cells as its power source. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Investigate the James Webb Space Telescope
IETEducationIETEducation

Investigate the James Webb Space Telescope

(0)
Examine the materials used on the James Webb Space Telescope in this free activity. In this engaging STEM activity for KS3, we will delve into the groundbreaking technologies used in the construction of the James Webb Space Telescope (JWST), one of humanity’s most impressive space observatories. As budding engineers, students will have the unique opportunity to investigate the engineered materials that make the JWST a marvel of modern engineering. Get ready to uncover the secrets behind the telescope’s incredible capabilities, discover the innovative materials that withstand the harsh conditions of space, and gain a deeper understanding of how scientific ingenuity allows us to peer into the universe’s farthest reaches. Activity: Investigate the James Webb Space Telescope In this activity, students will investigate an engineered material and share the results of their research with the class. This unit has a predominantly design & technology, and engineering focus, although it could be used in science. It could also be used as a main lesson or a research activity to develop an understanding of materials and their properties. What is the James Webb Space Telescope? The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy. Suggested learning outcomes By the end of this activity, students will be able to understand that materials can be selected for specific characteristics and purposes, they will be able to identify the properties of materials required for a particular function, and they will be able to explore a range of engineered materials, understanding why they are used. The engineering context The materials students will examine are used in the JWST or aerospace applications. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Energy transfer
IETEducationIETEducation

Energy transfer

(0)
Explore energy transfer and energy efficiency using wind turbines The concept of energy transfer is brought to life in this activity, showing students how the kinetic energy of wind can be harnessed to power homes and businesses. Windmills and wind turbines are based upon the principle of trying to create a shape where air flow causes the maximum possible change in kinetic energy. The hands-on nature of this task, which involves modifying a basic wind turbine to generate electricity, will appeal to students’ curiosity and creativity. This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT). Tools/resources needed Electric fans Turbines at 5 angles (Most blades can be bought as kits, or partial kits can be purchased where students can build their own blades) Wires Rulers Crocodile clips Voltmeter Ammeter or multimeter Model Generator Activity: Explore energy transfer and energy efficiency using wind turbines This activity gives students the opportunity to explore how the energy efficiency of turbines is directly affected by their design (shape and angle, which can be determined through the study of aerodynamics). The engineering context This activity provides a real-world context, introducing students to the principles of aerodynamics and energy efficiency in engineering design. As they explore how the shape and angle of turbine blades affect energy conversion, they’re learning vital principles relevant to fields such as renewable energy engineering, mechanical engineering, and environmental engineering. Suggested learning outcomes By the end of this activity, students should be able to describe how energy is transferred using turbines and explain the importance of efficiency in devices. They will have designed an investigation to determine the relationship between efficiency and turbine design (shape and angle). Students will also have developed critical thinking skills as they control variables and analyse results to improve accuracy. In addition, they’ll gain a broader understanding of renewable energy resources, highlighting the need to develop alternative ways to generate electricity. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Electromagnetic spectrum
IETEducationIETEducation

Electromagnetic spectrum

(0)
Compare different types of electromagnetic waves The electromagnetic spectrum is a fundamental part of our universe, influencing everything from the warmth of sunlight to the functionality of our electronics. This activity delves into different types of electromagnetic waves and their everyday applications. It ties into key concepts like the electromagnetic spectrum, infra-red, wave, and frequency. By investigating the technology used in the Nintendo Wii and designing an interactive ‘tag’ game, students will enjoy a hands-on, practical approach to learning. As part of the ‘Time for a game’ scheme of work, this activity provides an electronics systems context for students to explore infrared technologies. Other activities include Inputs and outputs of design and Binary numbers. This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics and design and technology (DT). Activity: Compare different types of electromagnetic waves This is an engaging activity in which students investigate the technology used in the Nintendo Wii, exploring infrared communication. They can then apply this knowledge and understanding into the design of an interactive ‘tag’ game. Download our activity overview and PowerPoint presentation for a detailed lesson plan for teaching students how to compare different types of electromagnetic waves. The engineering context Learning about the electromagnetic spectrum introduces them to principles critical to electrical and telecommunications engineering, such as understanding wave behaviour and frequencies. Suggested learning outcomes By the end of this activity, students will gain a solid understanding of how light and infrared travel as waves. They will comprehend the electromagnetic spectrum and its applications, as well as understand the link between frequency and wavelength. Furthermore, this activity nurtures critical thinking and independent investigation skills, providing a broader understanding of communication methods and technologies. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Coding a geometric construction
IETEducationIETEducation

Coding a geometric construction

(0)
Following coded instructions for bisecting an angle In this activity students will learn how to code a geometric construction. They’ll do this by matching a set of instructions to the correct geometric construction. Learners will be introduced to the concept of Computer Numeric Controlled (CNC) machines. They’ll also be taught about the role of coding in executing precise tasks, such as bisecting an angle. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in maths or design & technology (D&T). Activity: Following coded instructions for bisecting an angle Students will use Robocompass, a web tool that lets leaners simulate geometric constructions on a computer screen. They will match each diagram with the correct instruction and arrange them so that they can create a storyboard of how to draw and bisect an angle. Download our activity overview for a detailed lesson plan for teaching students about coding a geometric construction. The engineering context Computer Numeric Controlled (CNC) machines follow pre-programmed instructions to execute tasks with precision, much like the coded geometric constructions students will work on in this activity. For example, CNC machines are used by engineers in manufacturing industries for common tasks such as cutting, drilling, and shaping materials. Suggested learning outcomes Students will learn how to bisect an angle while also learning how coded instructions can be used to execute geometric constructions. Download our activity sheet and related teaching resources for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan and presentation below. Please do share your highlights with us @IETeducation.
Micro:bit traffic light project
IETEducationIETEducation

Micro:bit traffic light project

(0)
Creating a pedestrian crossing system This activity tasks students with creating a scale model and working prototype for a pedestrian crossing system for a school, using the BBC micro:bit. This micro:bit traffic light project is an ideal activity for teaching students how to integrate a programmable system into a product design. It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in computing and design & technology (D&T). Hundreds of people are killed in accidents on roads in the United Kingdom every year. When schools are situated close to roads there is particular danger to children crossing them. A good, well programmed pedestrian control system can minimise risk and enable people to cross the road safely. The engineering context Designing and prototyping are essential processes used by engineers for research and development in manufacturing and product design. Students will how learn how elements of electrical, software and systems engineering can come together to create one final product that can be used by society. Suggested learning outcomes This activity will teach students to integrate a programmable system into a prototype scale model. It will help students develop modelling and prototyping skills, allowing them to show creativity and the ability to avoid stereotypical responses when creating design solutions. Download our activity sheet and related teaching resources for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan and presentation below. Please do share your highlights with us @IETeducation
Data logging - difference calculations
IETEducationIETEducation

Data logging - difference calculations

(0)
Making calculations and applying formulas to a spreadsheet of data In this maths activity students will be asked to estimate the number of visitors within an aquarium. They’ll do this by using a spreadsheet mathematical formula that calculates the difference between the number of people entering and the number of people leaving the building. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in maths. Activity: Making calculations and applying formulas to a spreadsheet of data Students will view a dataset that has monitored the number of visitors entering and leaving a large aquarium. Learners will be asked questions based on this data, including how many visitors were in the building at a specific time. They will also be given a spreadsheet formula for calculating the difference between the number of people entering and exiting the building and be asked to adapt that formula for the different times of the day. Download our activity overview and presentation for a detailed lesson plan for teaching students about data logging. The engineering context Learning how to use maths formulas within spreadsheets saves a significant amount of time and brainpower, allowing engineers to quickly extract information from raw data. Devices that allow public buildings to monitor the number of visitors that are within a building at any one time are an example of data logging in practice. This may be essential for fire safety regulations or to prevent various areas from getting overcrowded. Suggested learning outcomes This data logging activity will give students the opportunity to identify and then attempt to explain numerical patterns and sequences. It also allows students to practice using formulas within spreadsheets such as Excel or Google Sheets. Download our activity sheet and related teaching resources for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan and presentation below. Please do share your highlights with us @IETeducation.
System analysis and design with the BBC micro:bit
IETEducationIETEducation

System analysis and design with the BBC micro:bit

(0)
What security systems’ features would deter a burglar from breaking into a home? For this introductory activity, students will analyse the needs of a home security system so that they can design a product that is tailored to meet a specific set of requirements. It is part of a unit of learning that tasks learners with researching, programming and developing a working door access and alarm system using the BBC micro:bit. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It is part of our series of resources designed to support the use of the BBC micro:bit in secondary school design & technology (DT), computing and engineering lessons. Following this lesson, students can move on to design a home security system with the BBC micro:bit. Activity: Researching and designing a home security system for the BBC micro:bit In this activity, learners will look at the requirements for a good home security system from the perspective of a burglar. They’ll do this by watching a home security video featuring home safety tips from an ex-burglar so that they can understand what deters burglars from breaking into a property. They will then use this information to develop at least four design criteria for the alarm system (such as inputs, outputs, programmable features, etc). The engineering context System analysis is used by engineers in software development, product design and other forms of systems engineering such as mechanical and electrical engineering. It’s a key part of understanding users’ needs so that products can be developed and improved through technical or scientific innovations. A home security system will give students a useful context for learning about programmable components and embedded intelligence in products. It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners. Suggested learning outcomes By the end of this lesson students will be able to identify and analyse the needs of a home security system, and then be able to determine key design criteria for developing the system. Download our activity sheet (classroom lesson plan, student handout and PowerPoint presentation) resources for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including videos!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Reverse engineering
IETEducationIETEducation

Reverse engineering

(0)
Developing a new design for earphones and headphones In this activity, students will develop a new design for earphones and headphones using reverse engineering. The activity will also teach the importance of fitness for purpose when designing new products. It is essential that products used in our everyday lives are fit for purpose. In order to design a product which will be useful to the customer it is important to understand how different products function and why different materials and components are suitable for different applications. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in design and technology (DT). It can be used as a starter activity to be followed by our Materials for design lesson. Activity: Developing a new design for earphones and headphones Students will answer a series of questions provided in our worksheet and focus on identifying the target audience for each of these designs, evaluating technology and style, and exploring the balance between form and function. They will also take part in a discussion that relates the design changes to societal and technological advancements and then use what they’ve learned to produce a design of their own, focusing on areas where they’d develop existing technology. The engineering context Engineers might reverse engineer a competitor’s product to understand its strengths, weaknesses, and how it compares to their own offerings. This can help them improve their own designs or develop innovative new features. Sometimes engineers will have to do this using just photographic or video evidence. For example, Ferrari and Mercedes F1 engineers might want to learn how a rival racing team like Red Bull have built their car but they will not be able to closely examine the car itself. They will have to rely on visual evidence for their reverse engineering analysis. It’s important to remember that there are ethical implications related to copying and intellectual property, and therefore reverse engineering should only be used for inspiration and to improve your existing understanding of a particular piece of technology. Suggested learning outcomes At the end of this lesson students will understand the construction and function of an engineered product or system for the purposes of reverse engineering. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation