Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Learning objectives:
Describe the difference between scalars and vectors.
List some common scalars and vectors.
Draw a scale diagram to represent a single vector.
Learning objectives:
To label the structure of an atom.
To describe the charge, relative mass and location of the subatomic particles.
To explain what isotopes are.
Learning objective:
Describe the magnetic field produced by a current-carrying wire and use the corkscrew rule to determine the direction of the field around it.
Learning objectives:
Describe the difference between magnetic and non-magnetic materials.
Describe the interaction of magnetic poles (attraction and repulsion).
PowerPoint that covers the following learning objectives:
Investigate how light travels through a lens.
Describe the difference between a convex lens and a concave lens.
Identify the focal point in a light ray diagram of a convex lens.
This is made for a KS3 science class.
Includes questions, answers, diagrams and link to a virtual simulation.
PowerPoint that covers power and the cost of electricity for a KS3 level class.
The starter revisits efficiency and energy stores from previous lessons to enhance memory recall.
The power equation (power = energy transferred / time) is covered with an example of how to show working out. Slides include rearranging the equation and unit conversions.
The cost equation (cost = power x time x cost per kWh) is also covered.
Answers are included.
PowerPoint that covers generating electricity by combusting fossil fuels. Includes how fossil fuels are formed, what we use them for, how electricity is generated and the advantages and disadvantages. This is made for a KS3 level class.
The starter activity revisits efficiency and power from previous lessons to enhance memory recall.
PowerPoint that covers the following learning objectives:
Describe and explain what happens to light when it passes through a prism.
State how primary colours add to make secondary colours.
State the effect of coloured filters on light and explain how filters and coloured materials subtract light.
This is made for a KS3 science class.
Includes questions, answers, diagrams, examples and a link to a virtual simulation of dispersion.
This comprehensive PowerPoint resource (.pptx) is designed to help students understand the phenomenon of light refraction, suitable for middle and high school physics classes. It includes engaging content to explain how light changes speed and direction when transitioning between different media, like air and glass, emphasizing key concepts such as bending towards or away from the normal.
The resource features:
Learning objectives: Students will describe and explain refraction and learn to draw accurate refraction diagrams.
Starter activity: Thought-provoking questions to compare the angle of incidence and refraction and explore differences in density between air and glass.
Interactive diagrams: Tasks for students to complete refraction diagrams and visualize effects like the apparent depth of objects in water.
Real-life applications: Examples like why a pencil appears broken in water and the visual effects of light bending.
Practice questions: Designed to test understanding, with solutions provided for effective feedback.
Updated recently, this PowerPoint includes detailed notes, diagrams, and practice exercises, making it an ideal resource for introducing refraction in a physics lesson or revising the topic. Perfect for classroom teaching or independent study!
PowerPoint that covers the key words: transparent, translucent, opaque, absorbed, transmitted, luminous, non-luminous, light meter and reflected. This is made for a KS3 level class.
The PowerPoint includes the answers to the activities.
PowerPoint that covers law of reflection, virtual images, specular reflection and diffuse reflection. This is made for a KS3 level class.
Includes diagrams, class practical (or demonstration/video), questions, answers and assessment for learning opportunities.
PowerPoint that covers the following learning objective:
Investigate how refraction happens using a glass block.
This is made for a KS3 level science class.
Includes questions, answers, diagrams, a practical opportunity and videos/simulations if you don’t have the practical equipment.
PowerPoint that covers the 5 energy stores, 4 energy transfers and the principle of conservation of energy. This is made for a KS3 level class.
Includes diagrams, questions, answers and a practical activity that can be done as a class or demonstration by the teacher.
PowerPoint that covers the following learning objectives:
Describe how drag forces and friction arise and identify examples.
Explain the effect of drag forces and friction in terms of forces.
Explain why drag forces and friction slow things down in terms of forces.
Includes questions, answers, examples, explanations and a practical opportunity including plasticine, cupcake cases and water.