By the end of the lesson learners should be able to:
State what is meant by standard deviation.
Describe how to calculate standard deviation.
Create error bars from data and place correctly on a graph.
A comprehensive lesson which will teach students about mutations and the role of siRNA
Contains differentiated tasks in order to meet the needs of different learners.
Learning objective: Analyze the impact of mutations on gene expression, protein structure and function, and organismal traits, considering both beneficial and harmful effects.
Success criteria:
I can define mutations and explain why mutations affect the produced protein.
Critically evaluate the role of siRNA and RISC in regulating gene expression at the post-transcriptional level, emphasizing their impact on mRNA stability, translation efficiency, and cellular processes.
3. I can critically assess the ethical considerations surrounding siRNA-based therapies, addressing concerns about potential unintended consequences and the manipulation of gene expression.
Contains 17 slides and a lesson plan
I used this resource to teach the Pearson international BTEC level 3 unit 14A genetics course.
A comprehensive lesson which will teach students about the process of transcription and translation
Contains support slides to aid learners.
Differentiated tasks in order to meet the needs of different learners.
Learning objective: Analyze the intricate molecular mechanisms of transcription and translation, explaining how genetic information flows from DNA to RNA and ultimately to functional proteins.
Success criteria:
I can describe the different types of RNA within a cell and relate this to their location.
I can justify why RNA plays an interconnecting role within the cell.
I can predict and evaluate the effects of a mutation from the DNA code to the entire cell.
Contains 23 slides and a lesson plan
I used this resource to teach the Pearson international BTEC level 3 unit 14A genetics course.
A comprehension lesson that teaches students how to create and analyse Sankey Diagrams.
The concept is introduced in the context of money to firstly engage the students (dirham currency is used as the students I taught were in the UAE, however, this should be fairly simple to understand as it is labelled below).
Support sheets are also included to guide students should it be needed.
Tasks are differentiated to suit the needs of each learner.
Progress checks are placed after each success criteria checkpoint to assess understanding.
By the end of the lesson students should be able to:
Success criteria:
I can critically analyse a Sankey diagram to identify quantifiable components.
I can construct and adapt Sankey diagrams
I can calculate efficiency of a system from its Sankey diagram.
Learning objective: Develop and interpret Sankey diagrams to visualize and analyze complex data flows.
Powerpoint contains 33 slides and a lesson plan is also attached.
A comprehension lesson that teaches students about factors that contribute towards crop yield. A hook from the film the martian is used as he has to find a way of surviving for additional days without supplied food.
Progress checks are available following each success criteria
Tasks are differentiated to suit the needs of each learner.
Learning objective: Justify changes that can be made to increase crop yield and predict future results.
By the end of the lesson learners should be able to:
Success criteria:
I can identify factors that improve crop yield.
I can explain why these factors improve crop yield.
I can evaluate the use of pest control methods.
Powerpoint contains 20 slides.
Created for the Applied Science iBTEC level 3 course international. Unit 14: Genetics and Genetic engineering. B: Explore how the process of cell division in eukaryotic cells contributes to genetic variation
The resource contains:
A powerpoint slideshow containing 67 slides - contains a slideshow animaton for mitosis to support understanding, videos and checkpoints where students can add to their coursework.
A brief accompanied with a writing frame underneath for students to implement their ideas.
An observation record sheet which just needs their names added for convenience.
An assessment record sheet, fitted with the details needed for 14B.
Tasks are differentitated to meet the needs of learners.
Originally created for the BTEC Applied Science level 3 qualification Unit 5 - Physics.
By the end of the lesson learners should be able to:
Recall a system in which work and heat is used.
Describe the first law of thermodynamics
Calculate specific heat and specific latent heat
The resource contains past paper questions and mark scheme answers.
Slides were originally created using google slides, opening in microsoft powerpoint might cause slight misalignment - open in google slides to avoid this.
A simple to follow resource aimed toward KS5 / A-level students (yrs 17-18) regarding s, p, d and f orbitals, the order in which they filled mentioning their spin and how electrons respond to quanta of energy.
By the end of the lesson learners should be able to:
Identify the different types of orbitals.
Describe the order in which orbitals are filled.
Explain why electrons promote to other orbitals.
A comprehensive double lesson which will teach students about DNA structure and DNA replication.
Contains support slides to aid learners.
Differentiated tasks in order to meet the needs of different learners.
Learning objective: Evaluate the roles of enzymes in DNA replication
Success criteria:
I can identify the components of nucleotides.
I can describe the structure of DNA and RNA
I can compare the structure of DNA and RNA
I can identify the enzymes and proteins present during DNA replication.
I can describe the process of DNA replication.
I can explain what is meant by the semi conservative hypothesis.
Contains 18 slides and a lesson plan
I used this resource to teach the Pearson international BTEC unit 14A genetics course.
A comprehensive lesson which teaches students the ultrastructure of animal and plant cells, and the internal structure of these organelles. This resource was designed for A-level biology unit 2 - cells, however, has been used effectively with BTEC applied science level 3.
Learning objective: To evaluate the internal structure of eukaryotic cells.
By the end of the lesson learners should be able to:
Success criteria:
Identify the organelles within the ultrastructure of plant and animal cells.
Describe the function of these organelles.
Compare and contrast both cells.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
Powerpoint contains 36 slides and 7 past paper questions.
By the end of the lesson learners should be able to:
Identify the trends in atomic radius across a period.
Identify the trend in atomic radius down a group.
Describe the trend in melting points across a period.
Explain why this trend occurs by mentioning the types of bonding.
Suitable for KS5 students (Yrs 17-18)
By the end of the lesson learners should be able to:
Identify the 2 intermolecular bonds.
Describe how London / Van-Der-Waals forces are formed.
Describe how permanent dipole / Hydrogen bonds are formed.
Compare the strength of Van-Der-Waals and Hydrogen bonds.
This lesson is aimed toward KS5 students (Yrs 16-18)
By the end of the lesson learners should be able to:
•Identify the elements within periods 2 and 3.
•Describe how periods 2 and 3 will react with Oxygen.
•Explain the formula, state and structure of each element in period 2 and 3.
Targeting Pearsons BTEC Applied science Unit 2 Assignment A.
By the end of the lesson learners will be able to:
Recall the definition of an acid and alkali.
Identify the end point of a titration
Describe how a titration is completed.
Explain the products of a titration.
By the end of the lesson learners should be able to:
State what’s meant by oxidation.
State what’s meant by reduction.
Describe REDOX reactions by referencing ions and electrons.
Justify if a reaction has caused reduction or oxidation of a specific element.
By the end of the lesson learners should be able to:
Identify independent, dependent and control variables.
Describe what makes a good method.
Evaluate data from tables.
Aimed toward BTEC Applied science Nationals Level 3 students - unit 2 Assignment A.
Learners will be able to.
Identify the concentration of solutions.
Describe how to calculate concentration.
Create a method for serial dilutions.
Aimed toward BTEC applied science Nationals level 3 (yrs 16-18) Unit 2 assignment A
Use of Beer-Lambert Law to calculate concentration.
Identify the elements of the Beer-Lambert equation.
Describe how concentration affects absorbance.
Explain the link between the colour of a solution and the concentration.
By the end of the lesson learners will be able to:
Identify waves from a top view.
Describe what occurs during diffraction.
Explain why a diffraction grating produces light and dark zones.