This lesson describes how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point 3.13 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and focuses on the levels of organisation in humans and plants
The lesson begins by using the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students are challenged to remember how the shape and arrangement of these cells differ in the trachea and alveoli in relation to their function. The link between specialised cells and tissues is made at this point of the lesson so students are reminded that a tissue is a group of cells that work together to perform a specific function or set of functions. Moving forwards, a quick quiz competition will challenge the students to recognise the liver, kidney, spinal cord and pancreas from a brief functional description and this leads into a series of questions that links back to topics 1 and 2 and earlier in topic 3 where blood clotting, proteins, osmosis, organelles, methods of transport, carbohydrates and enzymes were originally covered. These prior knowledge checks are found throughout the lesson, along with current understanding checks, and all of the mark schemes are embedded into the PowerPoint to allow students to assess their progress. In terms of organ systems, a quick task challenges them to recognise 8 of the 11 that are found in humans from descriptions and this leaves them to identify the gaseous exchange, digestive and reproductive systems as the remaining 3. This leads into a section about cystic fibrosis as this genetic disorder impairs the functioning of these systems.
The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy cells in the mesophyll layer and the guard cells are covered at length and in detail. The cells found in the xylem and phloem tissue are also discussed.
Get this resource as part of a bundle and save up to 33%
A bundle is a package of resources grouped together to teach a particular topic, or a series of lessons, in one place.
Topic 3: Voice of the Genome (Edexcel SNAB)
This bundle contains 13 detailed lesson PowerPoints, which together with their accompanying resources, have been planned to include a wide variety of tasks that will engage and motivate the students whilst covering the content of topic 3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The voice of the genome topic content includes key biological concepts such as eukaryotic cells, cell division and genetics and the following specification points are covered by these lessons: * All living organisms are made of cells, sharing common features * The ultrastructure of eukaryotic cells and the role of the organelles * The role of the rER and the Golgi body in protein transport * The relationship between the features of the mammalian gametes and their functions * The loci is the location of a gene on a chromosome * The linkage of genes on a chromosome and sex linkage * The role of meiosis in ensuring genetic variation * The role of mitosis and the cell cycle * The meaning of the terms stem cell, pluripotency and totipotency * The decisions about the use of stem cells in medical therapies * The specialisation of cells through differential gene expression * Understand how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems * Phenotype is the interaction between genotype and the environment * Epigenetic changes can modify the activation of certain genes * Some phenotypes are affected by multiple alleles for the same gene at many loci as well as the environment and this gives rise to continuous variation If you would like to sample the quality of lessons in this bundle, then download the ultrastructure of eukaryotic cells, mitosis and the cell cycle and gene expression lessons as these have been uploaded for free
The ultrastructure of cells (Edexcel SNAB)
This lesson bundle contains 7 lessons which have been designed to cover the Pearson Edexcel A-level Biology A (Salters Nuffield) specification points which focus on the structure of eukaryotic and prokaryotic cells and the functions of their components. The lesson PowerPoints are highly detailed, and along with the accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content found in topics 2, 3 and 4 of the course: 2.2 (i): Know the structure and function of cell membranes 3.1: Know that all living organisms are made of cells, sharing some common features 3.2: Know the ultrastructure of eukaryotic cells, including nucleus, nucleolus, ribosomes, rough and smooth endoplasmic reticulum, mitochondria, centrioles, lysosomes, and Golgi apparatus 3.3: Understand the role of the rough endoplasmic reticulum (rER) and the Golgi apparatus in protein transport within cells, including their role in the formation of extracellular enzymes 3.4: Know the ultrastructure of prokaryotic cells, including cell wall, capsule, plasmid, flagellum, pili, ribosomes, mesosomes and circular DNA 3.6: Understand how mammalian gametes are specialised for their functions (including the acrosome in sperm and the zona pellucida in the egg) 3.13: Understand how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems 4.7: Know the ultrastructure of plant cells (cell walls, chloroplasts, amyloplasts, vacuole, tonoplast, plasmodesmata, pits and middle lamella) and be able to compare it with animal cells.
Something went wrong, please try again later.
This resource hasn't been reviewed yet
To ensure quality for our reviews, only customers who have purchased this resource can review it
Report this resourceto let us know if it violates our terms and conditions.
Our customer service team will review your report and will be in touch.