pptx, 1.81 MB
pptx, 1.81 MB
docx, 15.24 KB
docx, 15.24 KB
docx, 96.44 KB
docx, 96.44 KB

This lesson explains why the conduction of an impulse along myelinated neurones is faster than along unmyelinated neurones. The PowerPoint and accompanying resources have been written to cover point (7) of topic 15.1 of the CIE A-level Biology specification.

A wide range of activities are included in this lesson to maintain the motivation of the students whilst ensuring that the detail is covered in depth. Interspersed with the activities are understanding checks and prior knowledge checks to allow the students to not only assess their understanding of the current topic but also challenge themselves to make links to earlier topics such as the movement of ions across membranes and biological molecules.

Over the course of the lesson, students consider the structure of the myelin sheath and specifically how the electrical insulation is not complete all the way along. This leaves gaps, known as the nodes of Ranvier, which allow the entry and exit of ions. Saltatory conduction can be poorly explained by a lot of students so time is taken to look at the way that the action potential jumps between the nodes and this is explained further by reference to local currents. The rest of the lesson focuses on the other two factors which are axon diameter and temperature and students are challenged to discover these two by focusing on the vampire squid.

Get this resource as part of a bundle and save up to 58%

A bundle is a package of resources grouped together to teach a particular topic, or a series of lessons, in one place.

Reviews

Something went wrong, please try again later.

This resource hasn't been reviewed yet

To ensure quality for our reviews, only customers who have purchased this resource can review it

Report this resourceto let us know if it violates our terms and conditions.
Our customer service team will review your report and will be in touch.