This detailed lesson describes the structure and properties of the cell membrane, focusing on the phospholipid bilayer, cholesterol and membrane proteins. The detailed PowerPoint and accompanying resources have been designed to cover the details of point 2.2 (i) of the Edexcel International A-level Biology specification and clear links are made to Singer and Nicholson’s fluid mosaic model which is covered in the following lesson
Students met triglycerides in topic 1 and so a quick quiz competition at the start of the lesson challenges their recall of the structure of these lipids so that they can recognise the similarities and differences to the structure of phospholipids. Time is taken to look at the differing properties of the phosphate head and the fatty acid tails in terms of water and the class is challenged to work out how the phospholipids must be arranged when there’s an aqueous solution on the inside and outside of the cell. This introduces the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to an upcoming topic so that students can understand how hormones or drugs will bind to target cells in this way. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are fused and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
Get this resource as part of a bundle and save up to 38%
A bundle is a package of resources grouped together to teach a particular topic, or a series of lessons, in one place.
Edexcel Int. A-level Biology Topic 2: Membranes, Proteins, DNA and Gene expression
Hours and hours of planning have gone into each and every lesson that's included in this bundle to ensure that the students are engaged and motivated whilst the detailed content of topic 2 of the Edexcel International A-level Biology specification is covered. Membranes, proteins, DNA and gene expression represent some of the most important structures, molecules and processes involved in this subject and a deep understanding of their role in living organisms is important for a student's success. The 20 lesson PowerPoints and accompanying resources contain a wide range of activities which cover the following topic 2 specification points: * Know the properties of gas exchange surfaces in living organisms * Understand how the rate of diffusion can be calculated using Fick's Law of Diffusion * Understand how the structure of the mammalian lung is adapted for rapid gas exchange * The structure and properties of cell membranes * The movement of free water molecules by osmosis * The movement across membranes by passive and active transport * The role of channel and carrier proteins in membrane transport * The basic structure of an amino acid * The formation of polypeptides and proteins * The structure of proteins * The mechanism of action and specificity of enzymes * Enzymes are biological catalysts * Intracellular and extracellular enzymes * The basic structure of mononucleotides * The structure of DNA and RNA * The process of DNA replication * The nature of the genetic code * A gene as a sequence of bases on DNA that codes for a sequence of amino acids * The process of transcription and translation * Errors in DNA replication give rise to mutations * Mutations give rise to disorders but many mutations have no observable effect * The meaning of key genetic terms * Understanding the pattern of monohybrid inheritance * Sex linkage on the X chromosome * Understand how the expression of a gene mutation in people with cystic fibrosis impairs the functioning of the gaseous exchange, digestive and reproductive systems * The uses and implications of genetic screening and prenatal testing Due to the detail included in all of these lessons, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to complete the teaching of the bundle If you would like to sample the quality of these lessons, then download the rapid gas exchange, osmosis, DNA & RNA, genetic code, genetic terms and cystic fibrosis lessons as these have been uploaded for free.
The ultrastructure of cells (Edexcel Int. A-level Biology)
This lesson bundle contains 6 lessons which have been designed to cover the Edexcel International A-level Biology specification points which focus on the structure of eukaryotic and prokaryotic cells and the functions of their components. The lesson PowerPoints are highly detailed, and along with the accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content found in topics 2, 3 and 4 of the course: 2.2 (i): Know the structure and function of cell membranes 3.1: Know that all living organisms are made of cells, sharing some common features 3.2: Understand how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems 3.3: Know the ultrastructure of eukaryotic cells, including nucleus, nucleolus, ribosomes, rough and smooth endoplasmic reticulum, mitochondria, centrioles, lysosomes, and Golgi apparatus 3.4: Understand the role of the rough endoplasmic reticulum (rER) and the Golgi apparatus in protein transport within cells, including their role in the formation of extracellular enzymes 3.5: Know the ultrastructure of prokaryotic cells, including cell wall, capsule, plasmid, flagellum, pili, ribosomes, mesosomes and circular DNA 3.11: Understand how mammalian gametes are specialised for their functions (including the acrosome in sperm and the zona pellucida in the egg) 4.1 (i): Know the ultrastructure of plant cells (cell walls, chloroplasts, amyloplasts, vacuole, tonoplast, plasmodesmata, pits and middle lamella) and be able to compare it with animal cells 4.1 (ii): understand the function of the structures listed in (i)
Something went wrong, please try again later.
This resource hasn't been reviewed yet
To ensure quality for our reviews, only customers who have purchased this resource can review it
Report this resourceto let us know if it violates our terms and conditions.
Our customer service team will review your report and will be in touch.