This fully-resourced lesson describes the relationship between the structure of monosaccharides and their roles in living organisms. The engaging PowerPoint and accompanying resources have been designed to cover the second part of points 1.2 & 1.4 of the Edexcel International A-level Biology specification and describes alpha-glucose, galactose, fructose, deoxyribose and ribose.
The lesson begins by reminding students that monosaccharides are the simplest sugars and that these monomers provide energy. Using the molecular formula of glucose as a guide, students will be given the general formula for the monosaccharides and will learn that deoxyribose is an exception to the rule that the number of carbon and oxygen atoms are equal. Moving forwards, students have to study the displayed formula of glucose for two minutes without being able to note anything down before they are challenged to recreate what they saw in a test of their observational skills. At this point of the lesson, the idea of numbering the carbons is introduced so that the different glycosidic bonds can be understood in an upcoming lesson as well as the recognition of the different isomers of glucose. The difference between alpha and beta-glucose is provided but students do not need to consider the beta form until topic 4. The remainder of the lesson focuses on the roles of the monosaccharides and the final task involves a series of application questions where the students are challenged to suggest why ribose could be considered important for active transport and muscle contraction
Get this resource as part of a bundle and save up to 40%
A bundle is a package of resources grouped together to teach a particular topic, or a series of lessons, in one place.
Topic 1: Molecules, Transport & Health (Edexcel International A-level Biology)
This bundle contains 11 detailed lesson PowerPoints and the variety of tasks that are contained within these slides and the accompanying resources will engage and motivate the students whilst covering the following specification points within topic 1 of the Edexcel International A-level Biology specification: * The importance of water as a solvent in transport * The difference between monosaccharides, disaccharides and polysaccharides * The relationship between the structure and function of monosaccharides * The formation and breakdown of disaccharides * The relationship between the structure and function of glycogen, amylose and amylopectin * The synthesis of triglycerides * The differences between saturated and unsaturated lipids * The relationship between the structure of capillaries, arteries and veins and their functions * Atrial systole, ventricular systole and cardiac diastole as the three stages of the cardiac cycle * The operation of the mammalian heart and the major blood vessels * The role of haemoglobin in the transport of oxygen and carbon dioxide * The oxygen dissociation curve for foetal haemoglobin and during the Bohr effect * The course of events that lead to atherosclerosis * The blood clotting process If you want to sample the quality of this bundle, then download the glycogen, amylose and amylopectin, cardiac cycle and blood clotting lessons as these have been uploaded for free
Carbohydrates, lipids, proteins and water (Edexcel Int. A-level Biology)
This lesson bundle contains 9 lessons which have been designed to cover the Edexcel International A-level Biology specification points which focus on the structure and function of the biological molecules, including water, carbohydrates, lipids and proteins. The lesson PowerPoints are highly detailed, and along with their accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content that’s found in topics 1, 2 and 4 of the course: 1.1: Understand the importance of water as a solvent in transport, including its dipole nature 1.2 (i): Know the difference between monosaccharides, disaccharides and polysaccharides, including glycogen and starch (amylose and amylopectin) 1.2 (ii): Be able to relate the structures of monosaccharides, disaccharides and polysaccharides to their roles in providing and storing energy 1.4: Know how monosaccharides join to form disaccharides (sucrose, lactose and maltose) and polysaccharides (glycogen and amylose) through condensation reactions forming glycosidic bonds, and how these can be split through hydrolysis reactions 1.5 (i): Know how a triglyceride is synthesised by the formation of ester bonds during condensation reactions between glycerol and three fatty acids. 1.5 (ii): Know the differences between saturated and unsaturated lipids 2.6 (i): Know the basic structure of an amino acid 2.6 (ii): Understand the formation of polypeptides and proteins (amino acid monomers linked by peptide bonds in condensation reactions) 2.6 (iii): Understand the significance of a protein’s primary structure in determining its three-dimensional structure and properties (globular and fibrous proteins and the types of bonds involved in its three-dimensional structure) 4.3: Understand the structure and function of the polysaccharides starch and cellulose, including the role of hydrogen bonds between β-glucose molecules in the formation of cellulose microfibrils
Something went wrong, please try again later.
This resource hasn't been reviewed yet
To ensure quality for our reviews, only customers who have purchased this resource can review it
Report this resourceto let us know if it violates our terms and conditions.
Our customer service team will review your report and will be in touch.