Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Autosomal linkage (AQA A-level Biology)
GJHeducationGJHeducation

Autosomal linkage (AQA A-level Biology)

(1)
This clear and concise lesson explains how the inheritance of two or more genes that have loci on the same autosome demonstrates autosomal linkage. The engaging PowerPoint and associated resource have been designed to cover the part of point 7.1 of the AQA A-level Biology specification which states that students should be able to use fully-labelled genetic diagrams to interpret the results of crosses involving autosomal linkage. This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be. This lesson has been written to tie in with the other 6 lessons from topic 7.1 (Inheritance) and these have also been uploaded
ELISA test (AQA A-level Biology)
GJHeducationGJHeducation

ELISA test (AQA A-level Biology)

(1)
This fully-resourced lesson describes how antibodies are used in the enzyme-linked immunosorbent assay (ELISA) test. The PowerPoint and accompanying resources are part of the last lesson in a series of 7 which have been designed to cover the details within point 2.4 of the AQA A-level specification. As the last lesson in this sub-topic, prior knowledge checks are included throughout the lesson which challenge the students on their knowledge of antibodies, immunity and protein structure. The lesson begins by challenging the students to use the details of a poster to recognise that individuals who have recovered from COVID-19 could donate plasma and the antibodies be infused into newly infected individuals. They are then expected to answer a series of exam-style questions where they have to describe the structure of these specific antibodies, recognise this as artificial, passive immunity and describe the potential problems should the virus mutate and the shape of its antigens change. This leads into the introduction of the use of antibodies in other ways, namely the ELISA test. The methodology of this test has been divided into four key steps which students will consider one at a time and then answer further questions about key details such as the immobilisation of the antigen and the removal of proteins and antibodies that have not bound by the washing with the detergent after each step. The lesson focuses on the use of this test for medical diagnosis but other uses such as plant pathology and the detection of allergens is briefly introduced at the end of the lesson.
Active & co-transport (AQA A-level Biology)
GJHeducationGJHeducation

Active & co-transport (AQA A-level Biology)

(1)
This lesson describes how the role of carrier of proteins and ATP in active transport and the co-transport of sodium ions and glucose in the ileum. The PowerPoint and accompanying resources are part of the final lesson in a series of 3 that have been designed to cover the details of point 2.3 of the AQA A-level Biology specification and also includes descriptions of endocytosis and exocytosis The start of the lesson focuses on the structure of this energy currency and challenges the students prior knowledge as they covered ATP in topic 1.6. As a result, they will recall that this molecule consists of adenine, ribose and three phosphate groups and that in order to release the stored energy, ATP must be hydrolysed. Time is taken to emphasise the key point that the hydrolysis of ATP can be coupled to energy-requiring reactions and this leads into a series of exam-style questions where students are challenged on their knowledge of simple and facilitated diffusion to recognise that ATP is needed for active transport. These questions also challenge them to compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The students are then shown how exocytosis is involved in a synapse and in the release of ADH from the pituitary gland during osmoregulation which they will cover in later topics. The final part of the lesson describes the movement of sodium ions and glucose from the ileum to the epithelial cells to the blood using a range of proteins which includes cotransporter proteins and students will learn that similar mechanisms are seen in the phloem and in the proximal convoluted tubule.
Cell signalling (OCR A-level Biology A)
GJHeducationGJHeducation

Cell signalling (OCR A-level Biology A)

(1)
This lesson describes how communication occurs between cells by cell signalling. The PowerPoint and accompanying resource have been designed to cover point 5.1.1 (b) of the OCR A-level Biology A specification and focuses on the use of the nervous system for communication between the CNS and effectors and the release of hormones to bring about responses. As this is one of the first lessons to be delivered in module 5, this lesson has been specifically planned to prepare students for the upcoming topics of neuronal and hormonal communication. Students begin by learning that cell signalling governs the basic activities of cells and coordinates multiple cell actions. Moving forwards, the next part of the lesson focuses on the nervous system and students will learn that an electrical impulse will be conducted on a somatic or an autonomic motor neurone depending upon the type of muscle to be stimulated. This provides some introductory information for modules 5.1.3 and 5.1.5. The remainder of the lesson describes how the hormones that are secreted by the cells of endocrine glands allow communication with target cells and the different actions of peptide and steroid hormones is considered.
AS Unit 2 Topic 1: All organisms are related through their evolutionary history (WJEC A-level Biology)
GJHeducationGJHeducation

AS Unit 2 Topic 1: All organisms are related through their evolutionary history (WJEC A-level Biology)

5 Resources
All 5 lessons in this lesson bundle are highly detailed to cover the specification points shown below that are found in AS unit 2, topic 1 of the WJEC A-level Biology specification: The classification of organisms into groups based on their evolutionary relationships The need for classification The three-domain classification system The characteristic features of the five kingdoms of living organisms The use of physical features and biochemical methods to assess the relatedness of organisms The concept of species The use of the binomial naming system Biodiversity as the variety of organisms found within a specified geographic region Biodiversity can be assessed in a habitat using Simpson’s index of diversity Biodiversity can be assessed within a species at a genetic level Biodiversity can be assessed at a molecular level using DNA fingerprinting Biodiversity has been generated through natural selection Anatomical, physiological and behavioural adaptations As well as the A-level Biology content within the slides, current understanding and prior knowledge checks in the form of exam-style questions, differentiated tasks and quiz competitions are included throughout to allow the students to assess their progress If you would like to sample the quality of the lessons included in this bundle, then download the classification, species and the binomial naming system lesson as this has been shared for free
The ultrastructure of cells (Edexcel SNAB)
GJHeducationGJHeducation

The ultrastructure of cells (Edexcel SNAB)

7 Resources
This lesson bundle contains 7 lessons which have been designed to cover the Pearson Edexcel A-level Biology A (Salters Nuffield) specification points which focus on the structure of eukaryotic and prokaryotic cells and the functions of their components. The lesson PowerPoints are highly detailed, and along with the accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content found in topics 2, 3 and 4 of the course: 2.2 (i): Know the structure and function of cell membranes 3.1: Know that all living organisms are made of cells, sharing some common features 3.2: Know the ultrastructure of eukaryotic cells, including nucleus, nucleolus, ribosomes, rough and smooth endoplasmic reticulum, mitochondria, centrioles, lysosomes, and Golgi apparatus 3.3: Understand the role of the rough endoplasmic reticulum (rER) and the Golgi apparatus in protein transport within cells, including their role in the formation of extracellular enzymes 3.4: Know the ultrastructure of prokaryotic cells, including cell wall, capsule, plasmid, flagellum, pili, ribosomes, mesosomes and circular DNA 3.6: Understand how mammalian gametes are specialised for their functions (including the acrosome in sperm and the zona pellucida in the egg) 3.13: Understand how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems 4.7: Know the ultrastructure of plant cells (cell walls, chloroplasts, amyloplasts, vacuole, tonoplast, plasmodesmata, pits and middle lamella) and be able to compare it with animal cells.
Structure of a chromosome (CIE A-level Biology)
GJHeducationGJHeducation

Structure of a chromosome (CIE A-level Biology)

(1)
This lesson describes the structure of the chromosome, including DNA, histone proteins, chromatids, centromeres and telomeres. The PowerPoint and accompanying worksheets have been primarily designed to cover point 5.1 (a) of the CIE A-level Biology specification but has been specifically planned to provides links to the upcoming topics of the cell cycle, mitosis, meiosis and DNA replication. The lesson begins with a prior knowledge check, where the students have to recall why the DNA in prokaryotic cells is described as being naked. This re-introduces histone proteins, and then time is taken to describe that the wrapping of DNA molecules around these proteins forms the linear chromosomes in the nucleus of eukaryotic cells. A series of 7 exam-style questions are used throughout the lesson and challenge the students to apply their knowledge and understanding to unfamiliar situations and challenge their knowledge of topics 1 and 2 (cell structure and biological molecules). The mark schemes for all of these questions are embedded into the PowerPoint to allow the students to assess their progress. Moving forwards, a quiz competition is used to introduce the terms diploid, chromatid and centromere and the S phase of interphase in a fun and memorable way. Students will learn that the duplication of chromosomes results in pairs of identical sister chromatids that are joined by a centromere. The importance of the splitting of the centromere in mitosis is explained and then the students are challenged to explain why the non-sister chromatids are involved in crossing over, when variation is needed. The final part of the lesson considers the repetitive nucleotide sequences found on the end of chromosomes that are known as telomeres and students will gain an initial understanding about their structure so they are prepared for the upcoming lesson on their significance
Populations in ecosystems (AQA A-level Biology)
GJHeducationGJHeducation

Populations in ecosystems (AQA A-level Biology)

(1)
This lesson focuses on the key terms associated with ecosystems and describes how populations are affected by a range of factors. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 4 lessons that cover the details of point 7.4 of the AQA A-level Biology specification As shown in the cover image, a modified version of the quiz competition BLOCKBUSTERS runs throughout the lesson and this introduces new terms as well as challenging students to recall key terms that were encountered in previous topics. These include population, ecosystems, competition, niche, abiotic factors and carrying capacity. Each time a term is met, time is taken to describe its meaning and to explain its relevance and context in this topic of populations in ecosystems. Exam-style questions are also used to challenge the students to apply their understanding and displayed mark schemes allow them to assess their progress. Prior knowledge checks interspersed within the lesson which check on topics such as the nitrogen cycle, adaptations and the biological classification of a species
Module 5.2.2: Respiration (OCR A-level Biology A)
GJHeducationGJHeducation

Module 5.2.2: Respiration (OCR A-level Biology A)

9 Resources
All 9 of the lessons included in this bundle are fully resourced and have been designed to cover the detailed content of module 5.2.2 (Respiration) of the OCR A-Level Biology A specification. The following specification points are covered by this bundle of lessons: The need for cellular respiration The structure of the mitochondrion The process and site of glycolysis The link reaction and its site in the cell The process and site of the Krebs cycle The importance of coenzymes in cellular respiration The process and site of oxidative phosphorylation The chemiosmotic theory The process of anaerobic respiration in eukaryotes The difference in the relative energy values of carbohydrates, lipids and proteins The use and interpretation of the respiratory quotient All of the lessons are detailed and engaging and contain regular progress checks so that students can assess their understanding of the current topic as well as prior knowledge checks to enable links between topics and modules to be seen It is estimated that these lessons will cover in excess of a month’s A-level Biology teaching time
Monoclonal antibodies
GJHeducationGJHeducation

Monoclonal antibodies

(4)
An engaging lesson presentation (32 slides) and differentiated worksheets that look at the meaning of the substances termed monoclonal antibodies, explains how they are produced and explores their different applications. The lesson begins by breaking the term down into three parts so that students can understand that these substances are proteins that attach to antigens and come from a single clone of cells. Students will meet key terms such as lymphocytes, myelomas and hybridomas and will be able to link them to understand how these antibodies are produced. Moving forwards, time is taken to focus on the application of monoclonal antibodies in pregnancy tests. There are regular progress checks throughout the lesson so that students can assess their understanding and a set homework is included as part of the lesson. This lesson has been written for GCSE students but can be used with lower ability A-level students who are studying this topic
Topic 3: Organisms exchange substances with their environment (AQA A-level Biology)
GJHeducationGJHeducation

Topic 3: Organisms exchange substances with their environment (AQA A-level Biology)

17 Resources
This lesson bundle contains 17 detailed and fully-resourced lessons which cover the following specification points in topic 3 of the AQA A-level Biology specification: Topic 3.1 The relationship between the size of an organism or structure and its surface area to volume ratio The development of systems in larger organisms as adaptations that facilitate exchange as this ratio reduces Topic 3.2 Adaptations of gas exchange surfaces as shown by gas exchange in single-celled organisms, insects, bony fish and the leaves of dicotyledonous plants The gross structure of the human gas exchange system The essential features of the alveolar epithelium as a surface over which gas exchange takes place The mechanism of breathing to include the role of the diaphragm and the intercostal muscles Topic 3.3 During digestion, large molecules are hydrolysed to smaller molecules Digestion in mammals by amylases, disaccharidases, lipase, endopeptidases, exopeptidases and dipeptidases Mechanisms for the absorption of the products of digestion by cells lining the ileum of mammals Topic 3.4.1 The structure and role of haemoglobin in the loading, transport and unloading of oxygen The effects of carbon dioxide concentration on the dissociation of oxyhaemoglobin The general pattern of blood circulation in a mammal The gross structure of the human heart Pressure and volume changes and valve movements during the cardiac cycle The structure of the arteries, arterioles and veins The formation of tissue fluid and its return to the circulatory system Topic 3.4.2 Xylem as the tissue that transports water The cohesion-tension theory of water transport Phloem as the tissue that transports organic substances in plants The mass flow hypothesis for the mechanism of translocation in plants If you would like to sample the quality of the lessons included in this bundle, then download the following lessons which have been uploaded for free Alveolar epithelium Absorption in the ileum Arteries, arterioles and veins Formation of tissue fluid Translocation
Sex determination
GJHeducationGJHeducation

Sex determination

(2)
A fully-resourced lesson which looks at how the sex chromosomes which determine gender are inherited in humans. The lesson includes an engaging lesson presentation (24 slides) and an associated worksheet containing knowledge recall and application questions. The lesson begins with a range of different quiz competitions which enable the students to get the answers of X, Y, zygote and 23. With a little bit of assistance, students are challenged to bring these terms together to complete a passage about how the inheritance of either an XX genotype will lead to a female or a XY genotype will lead to a male. Moving forwards, students are told how they will be expected to be able to construct a genetic diagram to show the inheritance of gender and so are given a quick recap before being challenged to do just that. The last part of the lesson gets students to discuss and consider whether females or males are responsible for determining sex in terms of their gametes. There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students primarily but the content is suitable for both KS3 and even A-level students
Ventilation and gas exchange in bony fish (OCR A-level Biology)
GJHeducationGJHeducation

Ventilation and gas exchange in bony fish (OCR A-level Biology)

(2)
This lesson describes the roles of the buccal cavity, operculum, gill lamellae and countercurrent flow in ventilation and gas exchange in bony fish. The detailed PowerPoint and accompanying resources are part of the first lesson in a series of 2 that have been designed to cover the details of point 3.1.1 (f) of the OCR A-level Biology A specification. The second lesson in this series covers the mechanisms of ventilation and gas exchange in insects. The lesson has been specifically planned to prepare students for the content of module 3.1.2 (Transport in animals) and therefore begins with an introduction and a brief description of the single circulatory system of a fish as this has an impact on the delivery of deoxygenated blood to the lamellae. A quick quiz competition is used to introduce the operculum and then the flow of blood along the gill arch and into the primary lamellae and then into the capillaries in the secondary lamellae is described. The next task challenges the students to use their knowledge of module 2 to come up with the letters that form the key term, countercurrent flow. This is a key element of the lesson and tends to be a feature that is poorly understood, so extra time is taken to explain the importance of this mechanism. Students are shown two diagrams, where one contains a countercurrent system and the other has the two fluids flowing in the same direction, and this is designed to support them in recognising that this type of system ensures that the concentration of oxygen is always higher in the oxygenated water than in the blood in the lamellae. The remainder of the lesson focuses on the coordinated movements of the buccal-opercular pump to ensure that the water continues to flow over the gills. Current understanding and prior knowledge checks are included throughout the lesson and students can assess their progress against the mark schemes which are embedded into the PowerPoint
Optical and electron microscopes (AQA A-level Biology)
GJHeducationGJHeducation

Optical and electron microscopes (AQA A-level Biology)

(2)
This fully-resourced lesson describes the principles and limitations of optical, transmission electron and scanning electron microscopes. The engaging PowerPoint and accompanying resources have been designed to cover the specification details at the start of topic 2.1.3 of the AQA A-level Biology course and also explains the difference between magnification and resolution. When designing all four of the lessons to cover the detail of 2.1.3, I was conscious that microscopes and the methods of studying cells is a topic that doesn’t always attract the full attention of the students. In line with this, I aimed to plan lessons that encouraged engagement so that the likelihood of knowledge retention and understanding was increased. An ongoing quiz competition runs across the 4 lessons and in this particular lesson, rounds such as YOU DO THE MATH and IT’S TIME FOR ACTION will introduce key terms and values in a fun and memorable way. Time is taken to look at the key details of each of the types of microscope and students will be able to describe how light or the transmission of electrons through or across a specimen will form an image. Students will come to recognise the difference between magnification and resolution and examples are provided and exam-style questions used to check on understanding. As well as current understanding checks, prior knowledge checks challenge the students to make links to other biological topics which include specialised cells and tissues, cell structures and biological molecules. As detailed above, this lesson has been written to be the first in a series of 4 lessons and the others, which are uploaded are: Measuring the size of an object viewed under an optical microscope Use of the magnification formula Cell fractionation and ultracentrifugation
AQA GCSE Science B7 REVISION (Ecology)
GJHeducationGJHeducation

AQA GCSE Science B7 REVISION (Ecology)

(2)
An engaging lesson presentation (63 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within the Biology unit B7 (Ecology) of the AQA GCSE Combined Science specification (specification unit B4.7). The topics that are tested within the lesson include: Communities Abiotic factors Biotic factors Levels of organisation Recycling materials Deforestation Global warming Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" whilst crucially being able to recognise those areas which need further attention
OCR Gateway A GCSE Combined Science B3 (Organism-level systems) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science B3 (Organism-level systems) REVISION

(1)
An engaging lesson presentation (66 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module B3 of the OCR Gateway A GCSE Combined Science specification. The topics that are tested within the lesson include: Nervous system Reflexes Hormones Negative feedback The menstrual cycle Controlling reproduction Using hormones to treat infertility Students will be engaged through the numerous activities including quiz rounds like "From Numbers 2 LETTERS" and "Take the IVF Hotseat" whilst crucially being able to recognise those areas which need further attention
Gene mutations (OCR A-level Biology)
GJHeducationGJHeducation

Gene mutations (OCR A-level Biology)

(1)
This fully-resourced lesson describes the beneficial, neutral and harmful effects of gene mutations on the primary structure of a polypeptide. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 6.1.1 (a) of the OCR A-level Biology A specification which states that students should be able to understand how substitutions, deletions and insertions change the base sequence and describe how this affects protein production and function. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was covered in module 2.1.3. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a task called known as THE WALL is used to introduce to the names of three types of gene mutation whilst challenging the students to recognise terms which are associated with the genetic code and were met back in 2.1.3. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution
Polysaccharides (AQA A-level Biology)
GJHeducationGJHeducation

Polysaccharides (AQA A-level Biology)

(1)
This detailed and fully-resourced lesson describes the relationship between the structure and function of the polysaccharides: glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover the third part of point 1.2 of the AQA A-level Biology specification and clear links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. By the end of this lesson, students should understand how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also whether it spirals or not. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses once they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. In the final part of the lesson, time is taken to focus on the formation of cellulose microfibrils and macrofibrils to explain how plant cells have the additional strength needed to support the whole plant. Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete
Carbohydrates (WJEC A-level Biology)
GJHeducationGJHeducation

Carbohydrates (WJEC A-level Biology)

(1)
This engaging lesson describes the structure, properties and functions of the monosaccharides, disaccharides and polysaccharides. The PowerPoint lesson has been designed to cover point [c] as detailed in AS unit 1, topic 1 of the WJEC A-level Biology specification and it makes clear links to the upcoming lessons in this topic on alpha and beta glucose and the properties of starch, glycogen, cellulose and chitin. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. A number of quick quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the first round allows the students to meet some of common monosaccharides. Moving forwards, students will learn that a disaccharide is formed when two of these monomers are joined together and they are then challenged on their knowledge of condensation reactions which were originally encountered during the lesson on water. Students will understand how multiple reactions and multiple glycosidic bonds will result in the formation of a polysaccharide and glycogen, starch and cellulose are recalled and there is a brief introduction to chitin. The final part of the lesson considers how hydrolysis reactions allow polysaccharides and disaccharides to be broken back down into monosaccharides.
Isolation and speciation (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Isolation and speciation (Pearson Edexcel A-level Biology A)

(1)
This fully-resourced lesson explores how reproductive isolation can potentially lead to the formation of a new species by speciation . The engaging PowerPoint and accompanying resources have been designed to cover point 5.19 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should understand how isolation reduces gene flow between populations which can lead to allopatric or sympatric speciation. The lesson begins by using the example of a hinny, which is the hybrid offspring of a horse and a donkey, to challenge students to recall the biological classification of a species. Moving forwards, students are introduced to the idea of speciation and the key components of this process, such as isolation and selection pressures, are covered and discussed in detail. Understanding and prior knowledge checks are included throughout the lesson to allow the students to not only assess their progress against the current topic but also to make links to earlier topics in the specification. Time is taken to look at the details of allopatric speciation and how the different mutations that arise in the isolated populations and genetic drift will lead to genetic changes. The example of allopatric speciation in wrasse fish because of the isthmus of Panama is used to allow the students to visualise this process. The final part of the lesson considers sympatric speciation and again a wide variety of tasks are used to enable a deep understanding to be developed.