Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The role of ADH (WJEC A-level Biology)
GJHeducationGJHeducation

The role of ADH (WJEC A-level Biology)

(0)
This lesson describes the role of the posterior pituitary gland and ADH in the homeostatic balance of blood water potential. The PowerPoint and accompanying resources have been designed to cover specification points (f & g) in topic 7 of A2 unit 3 of the WJEC A-level Biology specification. Students learnt about the principles of homeostasis and negative feedback in an earlier lesson in this topic, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus
Xylem and phloem structure (WJEC A-level Biology)
GJHeducationGJHeducation

Xylem and phloem structure (WJEC A-level Biology)

(0)
This lesson describes how the structures of the xylem vessels, sieve tube elements and companion cells relates to their functions. The PowerPoint and accompanying resources have been designed to cover points (m & q) in topic 3 of AS unit 2 of the WJEC A-level Biology specification. Please note that this lesson does not include light and electron microscope pictures, so teachers will have to source and add these in themselves. The lessons begins by challenging the students to identify the substances that a plant needs for the cellular reactions, where they are absorbed and where these reactions occur in a plant. The aim of this task is to get the students to recognise that water and mineral ions are absorbed in the roots and needed in the leaves whilst the products of photosynthesis are in the leaves and need to be used all over the plant. Students will be reminded that the xylem and phloem are part of the vascular system responsible for transporting these substances and then the rest of the lesson focuses on linking structure to function. A range of tasks which include discussion points, exam-style questions and quick quiz rounds are used to describe how lignification results in the xylem as a hollow tube of xylem cells to allow water to move as a complete column. They will also learn that the narrow diameter of this vessel allows capillary action to move water molecules up the sides of the vessel. The same process is used to enable students to understand how the structures of the companion cells allows assimilates to be loaded before being moved to the sieve tube elements through the plasmodesmata.
Alleles & monohybrid inheritance (WJEC A-level Biology)
GJHeducationGJHeducation

Alleles & monohybrid inheritance (WJEC A-level Biology)

(0)
This fully-resourced lesson guides students through the principles of monohybrid inheritance, focusing on the importance of alleles. The PowerPoint and accompanying resources have been designed to cover points (a & b) in topic 3 of A2 unit 4 of the WJEC A-level Biology specification and includes the inheritance of alleles that demonstrate codominance. In order to minimise the likelihood of errors and misconceptions, step by step guides have been included throughout the lesson to support the students with the following: Writing parent genotypes Working out the different gametes that are made following meiosis Interpreting Punnett crosses to work out phenotypic ratios Students can often find pedigree trees the most difficult to interpret and to explain so exemplar answers are used as well as differentiated worksheets provided to support those students who need extra assistance
Interphase (WJEC A-level Biology)
GJHeducationGJHeducation

Interphase (WJEC A-level Biology)

(0)
This lesson describes the key events of the eukaryotic cell cycle and specifically focuses on those that occur in interphase. The PowerPoint and accompanying resources have been designed to cover point (a) in topic 6 of AS unit 1 of the WJEC A-level Biology specification and also introduces the stages of mitosis and cytokinesis to prepare students for the upcoming lesson on the significance of this type of cell division. The students were introduced to the cell cycle at GCSE so this lesson has been planned to build on that knowledge and to emphasise that the M phase which includes mitosis (nuclear division) only occupies a small part of the cycle. The students will learn that interphase is the main stage and that this is split into three phases, G1, S and G2. A range of tasks which include exam-style questions, guided discussion points and quick quiz competitions are used to introduce key terms and values and to describe the main processes that occur in a very specific order. Extra time is taken to ensure that key terminology is included and understood, such as sister chromatid and centromere, and this focus helps to show how it is possible for genetically identical daughter cells to be formed at the end of the cycle.
Double circulatory system of a mammal (WJEC A-level Biology)
GJHeducationGJHeducation

Double circulatory system of a mammal (WJEC A-level Biology)

(0)
This lesson describes the vascular system of mammals as a double circulatory system to allow comparisons with those in earthworms, insects and fish. The PowerPoint and accompanying resources have been designed to cover the final content of specification point (a) in topic 3 (Adaptations for transport) of AS unit 2 in the WJEC A-level Biology specification and there is a primary focus on the differences in pressure between the pulmonary and systemic circulation. The lesson begins with a focus on the meaning of a double circulatory system and checks that students are clear in the understanding that the blood passes through the heart twice per cycle of the body. Beginning with the pulmonary circulation, students will recall that the pulmonary artery carries the blood from the right ventricle to the lungs. An opportunity is taken at this point to check on their knowledge of inhalation and the respiratory system as well as the gas exchange between the alveoli and the capillary bed. A quick quiz is used to introduce arterioles and students will learn that these blood vessels play a crucial role in the changes in blood pressure that prevent the capillaries from damage. When looking at the systemic circulation, time is taken to look at the coronary arteries and renal artery as students have to be aware of these vessels in addition to the ones associated with the heart. In the final part of the lesson, students are challenged to explain how the structure of the heart generates a higher pressure in the systemic circulation and then to explain why the differing pressures are necessary.
Calculating cardiac output (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Calculating cardiac output (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes the meaning of the terms stroke volume and heart rate and explains how to use them to calculate the cardiac output. The PowerPoint and accompanying resources have been designed to cover the content of specification point 8.12 of the Edexcel GCSE Biology & Combined Science specifications. The lesson begins by challenging the students to use their knowledge of the structure of the heart chambers to identify the one which has the most muscular wall. Their discussions should lead to the left ventricle and following the introduction of the key term stroke volume using a quick quiz competition, they will learn that this factor is the volume of blood pumped out of the left ventricle each heart beat. Another competition introduces the normative values for stroke volume and the resting heart rate and then the students are challenged to use the provided equation to calculate the cardiac output and to write a definition for this factor using their current understanding. The remainder of the lesson considers how these three factors change during exercise and they are challenged to apply their understanding through a series of exam questions. This worksheet is differentiated two ways and the mark scheme is embedded into the PowerPoint to allow the students to assess their progress.
Meiosis (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Meiosis (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes the role of meiotic cell division, including a detailed explanation of how 4 genetically unidentical daughter cells are formed. The PowerPoint and accompanying resources have been designed to cover point 3.3 of the Edexcel GCSE Biology and Combined Science specifications. The students covered the mitotic cell cycle in topic 2 and their knowledge of this type of cell division is utilised throughout the lesson to help with the understanding of this cycle. The lesson begins by challenging the students to recall the meaning of diploid and they will learn that the parent cell at the start of the meiotic cell cycle is a diploid cell. Time is taken to remind them of the events of interphase and then the lessons focuses on the 2 sets of division in meiosis which produces four haploid daughter cells. The identity of these cells as gametes is emphasised. The final part of the lesson uses a series of exam questions to challenge the students on their understanding of the cycle and the mark schemes are embedded into the PowerPoint to allow the students to assess their progress.
Surface area to volume ratio (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Surface area to volume ratio (Edexcel GCSE Biology & Combined Science)

(0)
This lesson uses step by step guides to describe how to calculate the surface area to volume ratio. The PowerPoint and accompanying resources are part of the first lesson in a series of 2 lessons which have been designed to cover the detail of points 8.2 and 8.3 of the Edexcel GCSE Biology & Combined Science specifications. The calculation of the SA/V ratio can be an area of the course that students find difficult so this lesson breaks the calculation into parts to guide them through each step. The students are shown how to calculate the surface area, then the volume and then how to express the answer of the division calculation as a ratio against 1. After each step, the students are given the opportunity to apply their understanding and all questions have mark schemes with full workings embedded into the PowerPoint to allow the students to self-assess. Students also tend to struggle to see the relevance to Biology so the remainder of the lesson involves the calculation of the ratio for the alveoli in the human body. Students will discover that the surface area to volume ratio is significantly increased in these gas exchange surfaces which leads into the upcoming lesson on the adaptations of the alveoli to overcome the overall low ratio in larger organisms.
Genetic inheritance (AQA GCSE Biology)
GJHeducationGJHeducation

Genetic inheritance (AQA GCSE Biology)

(0)
This lesson explains the meaning of 11 key terms associated with the genetic inheritance topic and challenges the students to use them in context. The PowerPoint and accompanying resources have been designed to cover point 6.1.6 of the AQA GCSE Biology specification and include explanations of genome, chromosome, gene, allele, genotype, homozygous, heterozygous, phenotype, dominant, recessive and gamete. The key term, genome, was met earlier in topic 6 so the lesson begins with a knowledge retrieval with the definition for this term. As the genome is the entire DNA of an organism, the next task challenges the students to identify three errors in a passage about DNA. This leads into discussions about chromosomes and genes and time is taken to explain that homologous chromosomes have the same genes at the exact same gene loci. The students will learn that alternative forms of the gene (alleles) can be found at these loci and that these structures explain the differences in inherited characteristics. Moving forwards, the main section of the lesson describes the link between the dominant and recessive alleles, homozygous and heterozygous genotypes, and the physical expression as the phenotype. The final key term is gamete, and the students are challenged to recognise a definition for this term using their knowledge of meiosis. Two progress and understanding checks complete the lesson and check on the students’ ability to recognise and write definitions for these 11 terms and to use them accurately in a written description
Investigating the distribution and abundance of organisms (OCR GCSE Biology)
GJHeducationGJHeducation

Investigating the distribution and abundance of organisms (OCR GCSE Biology)

(0)
This lesson describes how to investigate the distribution and abundance of organisms and how to estimate the numbers of a species in a habitat. The PowerPoint and accompanying resources are part of the first lesson in a series of two lessons which have been designed to cover the details of point B6.1a of the OCR GCSE Biology specification. This first lesson focuses on the use of a quadrat to estimate population size as well as belt transects to consider distribution. Step by step guides are used throughout the lesson to model the workings required in the calculations. This includes the use of a 1 metre squared quadrat as well as other areas. Once a method has been modelled, the students are challenged with a series of exam questions and mark schemes are embedded into the PowerPoint to allow the students to self-assess.
Mitosis and Meiosis REVISION (AQA GCSE)
GJHeducationGJHeducation

Mitosis and Meiosis REVISION (AQA GCSE)

(0)
Students commonly confuse the two forms of cell division, so this revision lesson has been designed to address those mistakes and misconceptions. The PowerPoint and accompanying resources have been planned to challenge the students on their understanding of the details of points 1.2.1, 1.2.2 and 6.1.2 of the AQA GCSE biology and combined science specifications. The lesson goes through each of the three stages of the cell cycle including mitosis, to ensure that students can describe the key events and state the outcome in terms of the daughter cells. The lesson contains a series of tasks which include exam questions, discussions and a quiz which allow the students to assess their understanding. The final part of the lesson focuses on meiosis and specifically the differences to mitosis in terms of the number of cell divisions, the gametes formed, and their genetic make up. This lesson has been designed to be used for revision purposes in the lead up to the GCSE exams or in preparation for an end of topic test or mocks.
Control of blood glucose REVISION (GCSE)
GJHeducationGJHeducation

Control of blood glucose REVISION (GCSE)

(0)
This engaging revision lesson challenges students on their understanding of the homeostatic control system that regulates blood glucose concentration. The PowerPoint and accompanying resources have been designed to check on the understanding of the details in specification point 5.3.2 of the AQA biology and combined science specifications. A common mistake in this topic is that students confuse glycogen with glucagon and use them incorrectly so time is spent to ensure that students recognise the difference between the complex carbohydrate and the hormone. In addition to challenging the students on their knowledge of this control system, the following linked topics are also challenged: key biological terms (beginning with G) the digestive system structures in a control system
DNA methylation & acetylation (AQA A-level biology)
GJHeducationGJHeducation

DNA methylation & acetylation (AQA A-level biology)

(0)
This lesson describes how epigenetics, in the form of increased DNA methylation and decreased histone acetylation, controls gene expression. The PowerPoint and accompanying resources are part of the second lesson in a series of 4 which cover the content of point 8.2.2 (regulation of transcription and translation) of the AQA A-level biology specification. As shown in the cover image, the lesson begins with a challenge, where the students have to recognise the prefix epi. They will learn that this prefix means on or above in Greek meaning epigenetics can be described as factors causing changes to gene function beyond the genetic code. One of several discussion periods is used to encourage them to identify what is not involved here (i.e. gene mutations), and so, epigenetics is introduced as heritable changes in gene function without changes to the base sequence. Moving forwards, the process of DNA methylation is introduced, and students are challenged to predict how the addition of a methyl group could inhibit transcription before they have to use their prior knowledge of key terms to complete a passage about this concept. The details of a study which considered the correlation between DNA methylation and atherosclerosis are provided to broaden their knowledge and then they have to answer questions about the study using their knowledge of content from topics 1 - 7. The remainder of the lesson discusses acetylation and students will learn that the removal of acetyl groups from histones causes the chromatin to become highly condensed and prevents the transcription of the gene.
Epigenetic modification (Edexcel A-level biology B)
GJHeducationGJHeducation

Epigenetic modification (Edexcel A-level biology B)

(0)
This detailed lesson describes how gene expression can be changed by epigenetic modification, which is important in ensuring cell differentiation. The PowerPoint and accompanying resources describe DNA methylation, histone modification, and non-coding RNA as methods of modification and are part of the final lesson in a series of 3 lessons that cover the content in point 7.2 of the Edexcel A-level biology B specification (Factors affecting gene expression). HIV, atherosclerosis and cystic fibrosis are included in the lesson to demonstrate the application of this control of gene expression in real biological examples. Students are challenged throughout the lesson on their current understanding as well as their knowledge of previously covered topics which have links and the answers are embedded into the PowerPoint to allow them to assess their progress. The other lessons in this series are uploaded and are titled “transcription factors” and “RNA splicing”.
AQA A-level biology topic 6 REVISION
GJHeducationGJHeducation

AQA A-level biology topic 6 REVISION

(0)
This revision lesson provides students with the opportunity to assess their understanding of the AQA A-level biology topic 6 content. The lesson includes a multiple-choice assessment of 20 questions which have been written to challenge the content of topic 6 (Organisms respond to changes in their internal and external environments) and a PowerPoint where the answers are revealed, along with explanations and key points related directly to the specification. The PowerPoint also includes other questions about topic 6 that aren’t directly challenged in the 20 questions, as well as prior knowledge checks to encourage the students to make links to content from topics 1 - 5. This resource has been designed to be used at the end of the teaching of topic 6 and/or in the build up to the final A-level assessments. Lessons challenging content from the other 7 specification topics are also uploaded.
AQA A-level biology TOPIC 1 REVISION
GJHeducationGJHeducation

AQA A-level biology TOPIC 1 REVISION

(0)
This lesson has been designed to provide students with the opportunity to assess their understanding of topic 1 of the AQA A-level biology specification. Included in the lesson is an assessment consisting of 20 multiple choice questions and a PowerPoint containing the answers. The PowerPoint also contains explanations and key points related to the specification, as well as additional knowledge checks to challenge the content which isn’t directly covered by the 20 questions. There are also slides titled “Link to the future” where content is linked to upcoming lessons from topics 2 - 8. This lesson has been planned to be used at the end of topic 1, and/or in the build up to the final A-level assessments. Multiple-choice assessments for the other 7 topics are also uploaded.
Topic 16 REVISION (CIE A-level biology)
GJHeducationGJHeducation

Topic 16 REVISION (CIE A-level biology)

(0)
This revision lesson provides students with the opportunity to assess their understanding of inheritance (topic 16). The lesson includes a multiple-choice assessment of 10 questions and a PowerPoint containing the answers, where each answer slide shows the exact specification code to enable students to note the areas which may require extra attention. The PowerPoint also contains additional questions to challenge content from topic 16 of the CIE A-level biology specification (2025 - 2027 update) that isn’t directly covered by the 10 questions, and prior knowledge checks to encourage students to make links to content from topics 1 - 15. This lesson has been designed to be used at the end of topic 16, and in the build up to mocks and the final A-level assessments.
Topic 2 REVISION (CIE A-level biology)
GJHeducationGJHeducation

Topic 2 REVISION (CIE A-level biology)

(0)
This revision lesson provides students with the opportunity to assess their understanding of biological molecules (topic 2). The lesson includes a multiple-choice assessment of 10 questions and a PowerPoint containing the answers, where each answer slide shows the exact specification code to enable students to note the areas which may require extra attention. The PowerPoint also contains additional questions to challenge content from topic 2 of the CIE A-level biology specification (2025 - 2027 update) that isn’t directly covered by the 10 questions. This lesson has been designed to be used at the end of topic 2, and in the build up to mocks and the final A-level assessments.
Topic 6.1 AQA A-level biology
GJHeducationGJHeducation

Topic 6.1 AQA A-level biology

5 Resources
All 5 lessons included in this bundle have been filled with a variety of tasks to engage the students whilst covering the content of topic 6.1 of the AQA A-level biology specification, titled “Stimuli, both internal and external, are detected and lead to a response”. These tasks include understanding and prior knowledge checks to allow the students to assess their progress against the current topic, as well as making links to relevant topics from earlier in the course.
Responses in flowering plants (AQA A-level biology)
GJHeducationGJHeducation

Responses in flowering plants (AQA A-level biology)

(0)
This lesson describes how the movement of growth factors regulates growth in response to directional stimuli, focusing on gravitropism and phototropism. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 3, which have been designed to cover point 6.1.1 (Survival and response) of the AQA A-level biology specification. The lesson begins with a prior knowledge check, where the students have to identify key terms encountered in topics 1 - 4, and use their 1st letters to form the term, stimuli. Students are reminded of the meaning of a stimulus, and this introduces the need for organisms to detect and respond to stimuli, to increase their chances of survival. This lesson focuses on these responses in flowering plants, and builds on any knowledge they may have gained at GCSE. They should have met auxins at this previous level, but will now be introduced to IAA, and will complete several tasks which check that they understand the key features of these chemicals, such as their location of production and method by which they move through the shoots and roots. The students are guided through the movement of IAA to the shaded side in a shoot during phototropism, and will learn how this uneven distribution leads to uneven growth. An exam-style question presents them with two further scenarios, where the tip of the shoot has been cut off or is covered, and the students need to describe and explain what will happen to the appearance of the shoot after a week. Moving forwards, the students will learn how the pumping of hydrogen ions into the cell wall and the activation of expansin proteins are involved in the cell elongation. The remainder of the lesson discusses the response to gravity and explains how shoots and roots respond differently. The lesson is full of understanding and prior knowledge checks and all answers are embedded into the PowerPoint. The other two lessons in this series of 3 covering 6.1.1 describe taxes and kineses and the protective effect of a simple reflex.