Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Kidney: The gross & microscopic structure (Edexcel A-level Biology B)
GJHeducationGJHeducation

Kidney: The gross & microscopic structure (Edexcel A-level Biology B)

(0)
This detailed lesson describes the gross and microscopic structure of the mammalian kidney. The engaging PowerPoint and accompanying resource have been designed to cover point 9.9 (i) of the Edexcel A-level Biology B specification. The lesson was designed to tie in with the other lessons in topic 9.9 on ultrafiltration, selective reabsorption and the control of mammalian plasma concentration and a common theme runs throughout to allow students to build their knowledge gradually and develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption.
Autonomic control of heart rate (Edexcel A-level Biology B)
GJHeducationGJHeducation

Autonomic control of heart rate (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how the autonomic nervous system controls the heart rate. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 9.8 (i) of the Edexcel A-level Biology B specification which states that students should understand the roles of baroreceptors, chemoreceptors, the cardiac centre in the medulla oblongata and the sympathetic and parsympathetic nerves in the control. This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work
Selective reabsorption (Edexcel A-level Biology B)
GJHeducationGJHeducation

Selective reabsorption (Edexcel A-level Biology B)

(0)
This lesson describes how the mechanisms involved in the selective reabsorption of solutes in the proximal convoluted tubule. The PowerPoint and accompanying resource have been designed to cover the first part of specification point 9.9 (iii) of the Edexcel A-level Biology B specification and builds on the knowledge gained in the previous lessons on the structure of the nephron and ultrafiltration. The lesson begins by challenging the students to recall the substances that are found in the glomerular filtrate so that each of them can be considered over the course of the rest of the lesson. Moving forwards, the first of the numerous discussion points which are included in the lesson is used to get students to predict the component of the filtrate which won’t be found in the urine when they are presented with pie charts from each of these situations. Upon learning that glucose is 100% reabsorbed, along with most of the ions and some of the water, the rest of the lesson focuses on describing the relationship between the structure of the PCT and the function of selective reabsorption. Again, this section begins by encouraging the students to discuss and to predict which structures they would expect to find in a section of the kidney if the function is to reabsorb. They are given the chance to see the structure (as shown in the cover image) before each feature is broken down to explain its importance. Time is taken to look at the role of the cotransporter proteins to explain how this allows glucose, along with sodium ions, to be reabsorbed from the lumen of the PCT into the epithelial cells. The final part of the lesson focuses on urea and how the concentration of this substance increases along the tubule as a result of the reabsorption of some of the water.
Control of blood water potential (Edexcel A-level Biology B)
GJHeducationGJHeducation

Control of blood water potential (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how the release of ADH from the pituitary gland controls mammalian plasma concentration. The engaging PowerPoint and accompanying resources have been designed to cover the detail included in point 9.9 (iv) of the Edexcel A-level Biology B specification and also includes details of the roles of the osmoreceptors in the hypothalamus. The principles of homeostasis and negative feedback were covered in an earlier lesson in topic 9, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work.
Detection of light (Edexcel A-level Biology B)
GJHeducationGJHeducation

Detection of light (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the structure of the human retina and explains how the rhodopsin in rod cells allows vision in low light intensity. The detailed PowerPoint and accompanying resources have been designed to cover points 9.7 (i), (ii) & (iii) of the Edexcel A-level Biology B specification but also makes links to previously covered topics such as cell structure and nervous transmission. It is likely that students will be aware that the human retina contains rod and cone cells, so this lesson builds on that knowledge and adds the detail needed at this level. Students will discover that the optical pigment in rod cells is rhodopsin and that the bleaching of this into retinal and opsin results in a cascade of events that allows an action potential to be initiated along the optic nerve. Time is taken to go through the events that occur in the dark and then the students are challenged to use this as a guide when explaining how the events differ in the light. Key terms like depolarisation and hyperpolarisation, that were met in topic 9.5, are used to explain the changes in membrane potential and the resulting effect on the connection with the bipolar and ganglion cells is then described. Cone cells are also introduced, with the main focus being their distribution in the centre of the fovea which is used to explain colour vision in bright light.
Conduction along myelinated axons (Edexcel A-level Biology B)
GJHeducationGJHeducation

Conduction along myelinated axons (Edexcel A-level Biology B)

(0)
This fully-resourced lesson explains why the speed of transmission along myelinated axons is greater than along non-myelinated axons. The PowerPoint and accompanying resources have been designed to cover point 9.5 (iii) of the Edexcel A-level Biology B specification which states that students should understand the role of saltatory conduction in the transmission of action potentials. A wide range of activities have been written into this resource to maintain the motivation of the students whilst ensuring that the detail is covered in real depth. Interspersed with the activities are understanding checks and prior knowledge checks to allow the students to not only assess their understanding of the current topic but also challenge themselves to make links to earlier topics such as the movement of ions across membranes and biological molecules. Time at the end of the lesson is also given to future knowledge such as the involvement of autonomic motor neurones in the stimulation of involuntary muscles. Over the course of the lesson, students will learn and discover the myelin sheath wrapped around the axons of sensory and motor neurones allows these neurones to conduct impulses quickly between receptors and the CNS and between the CNS and effectors. There is a focus on this myelin sheath and specifically how the insulation is not complete all the way along which leaves gaps known as the nodes of Ranvier which allow the entry and exit of ions. Saltatory conduction is poorly understood (and explained) by a lot of students so time is taken to look at the way that the action potential jumps between the nodes and this is explained further by reference to local currents. The rest of the lesson focuses on the other two factors which are axon diameter and temperature and students are challenged to discover these two by focusing on the vampire squid.
Control of blood glucose concentration (CIE IGCSE Biology SUPPLEMENT)
GJHeducationGJHeducation

Control of blood glucose concentration (CIE IGCSE Biology SUPPLEMENT)

(1)
This resource, which consists of an engaging and detailed PowerPoint and a differentiated worksheet, has been designed to cover the content in the supplement section of topic 14.4 in the CIE IGCSE Biology specification, specifically the control of blood glucose concentration and the symptoms and treatment of diabetes type I. A wide range of activities are found across the lesson which will engage and motivate the students whilst the important content is covered and understanding and previous knowledge checks are included at regular points so students can assess their progress. The following content is covered across this resource: The release of insulin by the pancreas when high glucose levels are detected The role of the liver and muscle cells in the conversion of glucose to glycogen Negative feedback in this homeostatic control mechanism Diagnosis and treatment of type I diabetes Type I diabetes as an autoimmune disease (link to topic 10) The release of glucagon and the role of the liver cells when blood glucose concentration is low As shown above, links are made to other topics where possible so students can recognise the importance of making connections between related subjects. This lesson has been designed for students studying on the CIE IGCSE Biology course but is suitable for older students who are looking at this topic at A-level and need to recall the key details
The structure and function of the kidneys (CIE IGCSE Biology SUPPLEMENT)
GJHeducationGJHeducation

The structure and function of the kidneys (CIE IGCSE Biology SUPPLEMENT)

(1)
The engaging PowerPoint and accompanying differentiated worksheets which come as part of this lesson resource have been designed to cover the SUPPLEMENT section of topic 13.1 of the CIE IGCSE Biology specification which states that students should be able to describe the structure and function of the kidneys. Students will initially be introduced to the gross anatomy of the kidneys with the cortex and medulla and the associated ureter before moving on to the fine anatomy of the tubules and focusing on the key functions like ultrafiltration and selective reabsorption. Lots of discussion points and student discovery have been written into the lesson to encourage students to think about why a certain process takes place before attempting to explain it using the Biology. In addition, there are lots of understanding checks and prior knowledge checks so that students are challenged on their knowledge of previously learned topics such as active transport and the components of blood. The final task of the lesson challenges the students to use their knowledge of the formation of urea from earlier in topic 13 and combine it with what they have learnt in this lesson to arrange statements about the journey of this molecule into the right order This lesson has been designed for students who are studying the CIE IGCSE Biology course but is suitable for older students who are studying the kidney at A-level and want to recall some of the key details of the structure and function of this organ
Mitosis (CIE IGCSE Biology CORE & SUPPLEMENT)
GJHeducationGJHeducation

Mitosis (CIE IGCSE Biology CORE & SUPPLEMENT)

(1)
This lesson has been designed to cover the content in specification point 17.3 (Mitosis) which is part of topic 17 (Inheritance) of the CIE IGCSE Biology specification. A wide range of activities have been written into the lesson to motivate and engage the students whilst ensuring that the following content of both the Core & Supplement sections are covered in detail. The duplication of chromosomes before mitosis Mitosis is a form of division that results in genetically identical cells The important roles of mitosis for living organisms Stem cells use mitosis before differentiation to produce specialised cells Understanding checks have been included in the lesson at regular points to allow the students to assess their understanding as well as previous knowledge checks to topics like organelles in animal and plant cells. This lesson has been designed for GCSE-aged students but is suitable for older students who are studying mitosis at A-level and need to recall the key points
Kidney failure and its potential treatments (OCR A-level Biology A)
GJHeducationGJHeducation

Kidney failure and its potential treatments (OCR A-level Biology A)

(0)
This is a fully-resourced lesson that covers the details of specification point 5.1.2 (e) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the effects of kidney failure and its potential treatments. This lesson consists of an engaging PowerPoint (55 slides) and associated differentiated worksheets that look at the diagnosis of a number of different kidney-related conditions and the potential treatments for kidney failure. This lesson is designed to get the students to take on the numerous roles of a doctor who works in the renal ward which include testing, diagnosis and treatment. Having obtained measurements by GFR and results by taking urine samples, hey are challenged to use their knowledge of the function of the kidney to study urine samples (and the accompanying GP’s notes) to diagnose one of four conditions. They then have to write a letter to the patient to explain how they made this diagnosis, again focusing on their knowledge of the structure and functions of the Bowman’s capsule and PCT. The rest of the lesson focuses on haemodialysis, peritoneal dialysis and kidney transplant. There are regular progress checks throughout the lesson so that students can assess their understanding and there are a number of homework activities included in the lesson. This lesson is designed for A-level students who are studying the OCR A-level Biology specification and ties in nicely with the other uploaded lessons on this organ which include the structure and function of the nephron, ultrafiltration, selective reabsorption and osmoregulation.
AQA A-level Biology Topic 5 REVISION (Energy transfers in and between organisms)
GJHeducationGJHeducation

AQA A-level Biology Topic 5 REVISION (Energy transfers in and between organisms)

(0)
This is a fully-resourced REVISION lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic 5 (Energy transfers in and between organisms) of the AQA A-level Biology specification. The sub-topics and specification points that are tested within the lesson include: The light dependent reaction including the production of ATP and reduced NADP and the photolysis of water The light-independent reaction to form triose phosphate and regenerate RuBP Identify environmental factors that limit the rate of photosynthesis Glycolysis as the first stage of both aerobic and anaerobic respiration The conversion of pyruvate to lactate The stages of aerobic respiration that occur in the mitochondria Losses of energy through food chains The roles of microorganisms in the nitrogen cycle The environmental issues of the use of fertilisers as seen with eutrophication Students will be engaged through the numerous quiz rounds such as “Can you DEPEND on your knowledge” and “Are you on the right PATH” whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
Structure & function of a synapse (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure & function of a synapse (Edexcel A-level Biology B)

(0)
This lesson describes the relationship between the structure and function of a synapse, focusing on acetylcholine as the neurotransmitter. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the content of point 9.5 (iv) of the Edexcel A-level Biology B specification. The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this topic but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to acetylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also be challenged to make links to earlier topics.
Synapses (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Synapses (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson has been designed to cover point 8.4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification that states that students should know the structures and function of synapses in nerve impulse transmission. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters are considered to provide the students with a wider view of this topic and to make links to specification point 8.15 The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The final part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics.
The significance of water (Edexcel A-level Biology B)
GJHeducationGJHeducation

The significance of water (Edexcel A-level Biology B)

(0)
This detailed lesson describes the importance of the dipole nature of water and its numerous properties to living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point 1.7 of the Edexcel A-level Biology B course and the intricate planning ensures that each role is illustrated using a specific example. As the final lesson in the biological molecules topic, not only does this lesson cover the important content related to water but also acts as a revision tool as it checks on key topic 1 content such as condensation and hydrolysis reactions. A wide range of tasks are used to check on current understanding and prior knowledge and quick quiz competitions introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples: high specific heat capacity polar solvent surface tension incompressibility maximum density at 4 degrees Celsius
SYNAPSES (OCR A-level Biology A)
GJHeducationGJHeducation

SYNAPSES (OCR A-level Biology A)

(0)
This fully-resourced lesson covers the content of the first part of specification point 5.1.3 (d) of the OCR A-level Biology A specification that states that students should be able to demonstrate and apply an understanding of the structures and roles of synapses in nervous transmission. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters are considered to provide the students with a wider view of this topic. The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The final part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics. This lesson has been designed for students studying the OCR A-level Biology A course but could be used with very able GCSE students who are keen to develop their understanding of synapses over and above the small detail that is provided at that level. This lesson also ties in nicely with the other uploaded lessons from module 5.1.3 (neuronal communication) which are sensory receptors, neurones, nerve impulses and summation.
Rod cells in the retina (Edexcel A-level Biology A)
GJHeducationGJHeducation

Rod cells in the retina (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes how rod cells in the mammalian retina detect stimuli to allow vision in low light intensity. The detailed PowerPoint and accompanying resources have been designed to cover the second part of point 8.5 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and includes reference to the roles of rhodopsin, opsin, retinal, sodium ions, cation channels and hyperpolarisation in the formation of action potentials in the optic neurones. It is likely that students will be aware that the human retina contains rod and cone cells, so this lesson builds on that knowledge and adds the detail needed at this level. Students will discover that the optical pigment in rod cells is rhodopsin and that the bleaching of this into retinal and opsin results in a cascade of events that allows an action potential to be initiated along the optic nerve. Time is taken to go through the events that occur in the dark and then the students are challenged to use this as a guide when explaining how the events differ in the light. Key terms like depolarisation and hyperpolarisation, that were met earlier in topic 8, are used to explain the changes in membrane potential and the resulting effect on the connection with the bipolar and ganglion cells is then described.
Biodiversity and calculating an index of diversity (AQA A-level Biology)
GJHeducationGJHeducation

Biodiversity and calculating an index of diversity (AQA A-level Biology)

(0)
This lesson describes the meaning of biodiversity, explains how it relates to a range of habitats, and describes how to calculate an index of diversity. The PowerPoint and accompanying worksheets are part of the first in a series of 2 lessons that have been designed to cover the content of topic 4.6 of the AQA A-level Biology specification. The second lesson describes the balance between conservation and farming. A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise species, population, biodiversity, community and natural selection from their respective definitions. Once biodiversity as the variety of living organisms in a habitat is revealed, the students will learn that this can relate to a range of habitats, from those in the local area to the Earth. When considering the biodiversity of a local habitat, the need for sampling is discussed and some key details are provided to initially prepare the students for these lessons in topic 7. Moving forwards, the students will learn that it is possible to measure biodiversity within a habitat, within a species and within different habitats so that they can be compared. Species richness as a measure of the number of different species in a community is met and a biological example in the rainforests of Madagascar is used to increase its relevance. The students are introduced to an unfamiliar formula that calculates the heterozygosity index and are challenged to apply their knowledge to this situation, as well as linking a low H value to natural selection. The rest of the lesson focuses on the index of diversity and a 3-step guide is used to walk students through each part of the calculation. This is done in combination with a worked example to allow students to visualise how the formula should be applied to actual figures. Using the method, they will then calculate a value of d for a comparable habitat to allow the two values to be considered and the significance of a higher value is explained. All of the exam-style questions have mark schemes embedded in the PowerPoint to allow students to continuously assess their progress and understanding.
Transcription (AQA A-level Biology)
GJHeducationGJHeducation

Transcription (AQA A-level Biology)

(0)
This detailed lesson explains how the process of transcription results in the production of mRNA, either directly from DNA in prokaryotes or following splicing in eukaryotes. Both the detailed PowerPoint and accompanying resource have been designed to specifically cover the second part of point 4.2 of the AQA A-level Biology specification but also provides important information that students can use when being introduced to gene expression in topic 8. The lesson begins by challenging the students to recall that most of the nuclear DNA in eukaryotes does not code for polypeptides. This allows the promoter region and terminator region to be introduced, along with the structural gene. Through the use of an engaging quiz competition, students will learn that the strand of DNA involved in transcription is known as the template strand and the other strand is the coding strand. Links to previous lessons on DNA and RNA structure are made throughout and students are continuously challenged on their prior knowledge as well as they current understanding of the lesson topic. Moving forwards, the actual process of transcription is covered in a 7 step bullet point description where the students are asked to complete each passage using the information previously provided. They will learn that the RNA strand formed at the end of transcription in eukaryotes is a primary transcript called pre-mRNA and then the details of splicing are explained. An exam-style question is used to check on their understanding before the final task of the lesson looks at the journey of mRNA to the ribosome for the next stage of translation. This lesson has been written to challenge all abilities whilst ensuring that the most important details are fully explained.
The structures and functions of sensory, relay and motor neurones (OCR A-level Biology A)
GJHeducationGJHeducation

The structures and functions of sensory, relay and motor neurones (OCR A-level Biology A)

(0)
This is a fully-resourced lesson which covers the detail of point 5.1.3 (b) of the OCR A-level Biology A specification which states that students should be able to apply their understanding of the structures and functions of sensory, relay and motor neurones as well as the differences between myelinated and unmyelinated neurones. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to look at the importance of the myelin sheath for the sensory and motor neurones. Students will be introduced to the need for the entry of ions to cause depolarisation and will learn that this is only possible at the nodes of Ranvier when there is a myelin sheath. Key terminology such as saltatory conduction is introduced and explained. The final task involves a comparison between the three neurones to check that the students have understood the structures and functions of the neurones. Throughout the lesson, links are made to the upcoming topic of the organisation of the nervous system (5.1.5) and students will be given additional knowledge such as the differences between somatic and autonomic motor neurones. This lesson has been designed for students studying on the OCR A-level Biology A course.
Homeostasis and negative feedback (AQA A-level Biology)
GJHeducationGJHeducation

Homeostasis and negative feedback (AQA A-level Biology)

(0)
This lesson describes how homeostasis in mammals involves control systems that maintain the internal environment within narrow limits. The detailed and engaging PowerPoint and accompanying resources have been designed to cover the content of point 6.4.1 of the AQA A-level biology specification, which is the titled “Pripnciples of homeostasis and negative feedback”. As homeostasis is a topic met at GCSE, this lesson has been written to build on this knowledge as well as to check on their prior knowledge of earlier A-level topics such as osmosis when considering blood water potential and the use of glucose as a respiratory substrate. Discussion points are written into the lesson at regular intervals to encourage the students to consider why a particular process or method takes place and understanding checks allow them to assess their progress. Students will recall how body temperature, blood water potential and blood glucose concentration are maintained within restricted limits and the importance of these systems are looked into in detail. Time is taken to consider the importance of maintaining these aspects, specifically with relation to the activity of enzymes. As such, students will also discuss how the pH of the blood is maintained. The key components of the control system are recalled and then time is taken to focus on the cell signalling that occurs between the coordination centre and the effectors. Students will learn to associate the response with either the use of the neuronal or hormonal system. The final part of the lesson looks at the importance of negative feedback in reversing the change in order to bring the aspect back to the optimum and the added degree of control which this provides. Positive feedback is also briefly mentioned at the end.