Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Assisted Reproductive Technology (Edexcel GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Assisted Reproductive Technology (Edexcel GCSE Biology & Combined Science HT)

(0)
This resource has been designed to cover the higher tier content of specification point 7.8 as detailed in the Edexcel GCSE Biology & Combined Science specifications. The lesson takes the format of a day at a fertility clinic and students will see how three couples, who are at different stages of their currently unsuccessful journey to getting pregnant, are advised and the treatments that could be on offer to them. Discussion points are included throughout the lesson to encourage the students to talk about the Biology and to allow any misconceptions to be addressed if and when they arise. In addition, previous knowledge checks are regular so that the links between this topic and earlier ones such as the hormones in the menstrual cycle and contraception can be made. Students will be introduced to the abbreviation ART before learning how clomifene is used to treat infertility in women do not ovulate. Time is taken to explore alternative fertility drugs and students are challenged to explain why FSH and LH would be the reproductive hormones contained in these substances. The main focus of the lesson is IVF treatment and the main task culminates with students gaining a number of key points in the for and against argument before being challenged to continue this as a set homework in the form of an evaluation. Quiz competitions are used to introduce key terms in a fun and memorable way and the final task is a mathematical skills check where students will be able to compare the high number of multiple births that are associated with this treatment as compared to the number from natural births. This lesson has been designed for students studying the Edexcel GCSE Biology or Combined Science course but is also suitable for older students who are looking at this topic
Negative feedback (AQA GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Negative feedback (AQA GCSE Biology & Combined Science HT)

(0)
This resource contains an engaging PowerPoint and an accompanying worksheet which together cover the content of specification point 5.3.7 (Negative feedback) as found on the AQA GCSE Biology & Combined Science higher tier specifications. Over the course of the lesson, students will learn about the effects of the release of adrenaline and thyroxine and will understand how the latter is controlled by negative feedback. Due to the obvious connection to the previously learned endocrine system topic, regular opportunities are taken to check on this prior knowledge and these work well with the understanding checks which allow the students to assess their progress. Quiz competitions which include SAY WHAT YOU SEE and FROM NUMBERS 2 LETTERS are used to introduce key terms and abbreviations in a fun and memorable way, whilst the key details of the content is always at the forefront of the design of the lesson. This lesson has been written for students studying the higher tier of the AQA GCSE Biology or Combined Science courses but it is also suitable for use with A-level students who need to recall the key details of these two hormones
Control of body temperature (AQA GCSE Biology)
GJHeducationGJHeducation

Control of body temperature (AQA GCSE Biology)

(0)
The engaging Powerpoint and accompanying worksheet which come as part of this lesson resource have been designed to cover specification point 5.2.4 (Control of body temperature) as detailed in the AQA GCSE Biology specification. A wide range of activities which include Biology and Maths tasks and quiz competitions are interspersed with understanding and prior knowledge checks so that students are engaged and motivated whilst learning the key content in a memorable way and checking their progress. Students will learn that the body temperature is maintained at 37 degrees celsuis by a homeostatic control system called thermoregulation and will be challenged to recall the topic of enzymes to explain why this is so important. Time is taken to look at the responses brought about the effectors such as vasodilation and shivering and students will recognise how these lead a decrease or increase in body temperature back to the set point. Links are also made between the Sciences so that there is a deeper understanding of exactly why sweating cools the body down. This lesson has been designed for students studying the AQA GCSE Biology course but is suitable for older students who are studying Biology at A-level and need to recall the key details of thermoregulation.
Chromosomes and mitosis (WJEC GCSE Biology)
GJHeducationGJHeducation

Chromosomes and mitosis (WJEC GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover specification points 2.2 (a and b) about chromosomes and their role in mitosis as detailed in topic 2.2 (Cell division and stem cells) of the WJEC GCSE Biology specification. The wide range of activities will engage and motivate the students whilst ensuring that the content is covered in detail. In order for a deep understanding to be achieved, the other stages of the cell cycle (interphase and cytokinesis) are discussed so that students can recognise how th events that happen before and after this form of cell division results in genetically identical cells. A selection of summary questions will challenge the students on their understanding and ability to apply their knowledge to unfamiliar situations with questions about organisms other than humans. The lesson finishes by looking at the functions of mitosis in living organisms. This lesson has been designed for GCSE-aged students studying the WJEC GCSE Biology course but is also suitable for older students who are learning about mitosis and the cell cycle at A-level and need to go back over the key points
Topic 2.5: Response and regulation (WJEC GCSE Biology)
GJHeducationGJHeducation

Topic 2.5: Response and regulation (WJEC GCSE Biology)

8 Resources
All of the 8 lessons which are included in this bundle have been designed to engage and motivate the students whilst ensuring that the content of topic 2.5 (Response and regulation) of the WJEC GCSE Biology specification is covered in detail. They have been written to contain a wide range of activities which include understanding and prior knowledge checks to allow students to assess their progress as well as quick tasks and quiz competitions so key terms and values can be introduced in a fun and memorable way.
HORMONES as chemical messengers (WJEC GCSE Biology)
GJHeducationGJHeducation

HORMONES as chemical messengers (WJEC GCSE Biology)

(0)
This lesson has been designed to cover the content set out in specification point 2.5 (g) of the WJEC GCSE Biology specification which states that students should understand that hormones are chemical messengers which control many body functions. A wide range of activities have been written into the lesson with the aim of engaging and motivating the students whilst ensuring that the content is covered in detail. These activities include a number of quiz competitions which will challenge the students to identify an endocrine organ when presented with three organs as well as introducing them to the names of some of the hormones released by the pituitary gland. The following content is covered in this lesson: The location of the pituitary, adrenal and thyroid glands in the human body The location of the pancreas, ovaries and testes in the human body The hormones which are secreted by the endocrine glands The effects of the hormones on their target organs This lesson has been written for GCSE-aged students who are studying on the WJEC Biology course but it is suitable for younger students who are looking at this as one of the different organ systems
The structure and function of the EYE (WJEC GCSE Biology)
GJHeducationGJHeducation

The structure and function of the EYE (WJEC GCSE Biology)

(0)
This engaging and detailed resource, which contains a PowerPoint and accompanying worksheets, has been designed to cover the content of point 2.5 (e) of the WJEC GCSE Biology specification that states that students should know the structure and functions of the following 9 parts of the eye: sclera cornea pupil iris lens choroid retina blind spot optic nerve The lesson was designed to include a wide range of activities to engage and motivate the students so that the knowledge is more likely to stick. These activities include Have you got an EYE for the IMPOSSIBLE, as shown in the cover image, where students have to pick out the 8 structures of the human eye from the list and avoid the IMPOSSIBLE answer. There is also a particular focus on the light-sensitive cells in the retina, the pupil reflex and the change in the shape of the lens to accommodate near and distant objects. This lesson has been designed for students studying the WJEC GCSE Biology course but is suitable for both older and younger students who may be studying the eye.
The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)
GJHeducationGJHeducation

The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)

(0)
This is a detailed lesson resource that covers the content of point 5.1.3 (a) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their understanding of the roles of mammalian sensory receptors. There is a particular focus on the Pacinian corpuscle to demonstrate how these receptors act as transducers by converting one form of energy into electrical energy which is then conducted as an electrical impulse along the sensory neurone. The lesson begins by looking at the different types of stimuli that can be detected. This leads into a written task where students have to form sentences to detail how thermoreceptors, rods and cones, hair cells in the inner ear and vibration receptors in the cochlea convert different forms of energy into electrical energy. Students will be introduced to the term transducer and will be challenged to work out what these cells carry out by using their sentences. As stated above, students will meet a Pacinian corpuscle and learn that this receptors detects pressure changes in the skin using the concentric rings of connective tissue in its structure. The rest of the lesson focuses on how ions are involved in the maintenance of resting potential and then depolarisation. Time is taken to look into the key details of these two processes so students are confident with this topic when met again during a lesson on the generation of action potentials. All of the tasks are differentiated to allow students of different abilities to access the work. As well as understanding checks to allow the students to assess their progress against the current topic, there are also a number of prior knowledge checks on topics like inorganic ions and methods of movement. This lesson has been designed for students studying the OCR A-level Biology course
The pancreas and the release of insulin (OCR A-level Biology)
GJHeducationGJHeducation

The pancreas and the release of insulin (OCR A-level Biology)

(0)
This detailed and engaging lesson covers the detail of specification points 5.1.4 (c and d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the histology of the pancreas and the control of insulin secretion. There is a particular emphasis on structure throughout the lesson so that students can recognise the exocrine and endocrine tissues of the pancreas as well as describe their specific functions. The lesson begins with a list of endocrine glands and the students are challenged to select the gland which also has exocrine functions. This leads into a focus on the exocrine tissues of the pancreas, beginning with the enzymes that are secreted and form pancreatic juice. Students will discover how groups of these cells are called acini and the secretion of the enzymes into the lobule at the centre will lead to the intralobular ducts and finally the formation of the pancreatic duct. Moving forwards, students are introduced to the Islets of Langerhans and the specialised alpha and beta cells that are found within this endocrine tissue. The rest of this lesson looks at how the release of insulin from the beta cells is controlled. Some of the structures and substances involved have been met in earlier topics so a fun quiz round is used to see which students can recall these parts first. A series of questions and discussion points challenge the students to verbalise answers and to discuss key points so that the cascade of events that take place in the lead up to the release can be considered. In the final task, students have to describe these events in detail and this task has been differentiated so that students of differing abilities can access the work. This lesson has been specifically designed for students on the OCR A-level Biology A course and ties in well with the other lessons from module 5.1.4 on the control of blood glucose concentration and diabetes mellitus type I and II
Homeostasis and negative feedback (CIE International A-level Biology)
GJHeducationGJHeducation

Homeostasis and negative feedback (CIE International A-level Biology)

(0)
This is a detailed and engaging lesson which has been designed to cover specification points 14.1 (a, b and c) of the CIE International A-level Biology specification which states that students should be able to explain the importance of homeostasis and the roles of negative feedback and the communication systems in this control. As homeostasis is a topic met at GCSE, this lesson has been written to build on this knowledge as well as to check on their prior knowledge of earlier A-level topics such as osmosis when considering blood water potential. Discussion points are written into the lesson at regular intervals to encourage the students to consider why a particular process or method takes place and understanding checks allow them to assess their progress. Students will recall how body temperature, blood water potential and blood glucose concentration are maintained within strict limits and the importance of these systems are looked into in detail. They will also learn that carbon dioxide concentration and blood pressure are aspects that are controlled in the body and key terminology such as chemoreceptors and baroreceptors are used throughout so that students are confident with the meaning when met later in the module. The key components of the control system are recalled and then time is taken to focus on the cell signalling that occurs between the coordination centre and the effectors. Students will learn to associate the response with either the use of the neuronal or hormonal system. The final part of the lesson looks at the importance of negative feedback in reversing the change in order to bring it back to the optimum and the differences to positive feedback are also explored. This lesson has been written for students who are studying the CIE International A-level Biology course and ties in well with the other uploaded lessons on this topic such as those on the kidney
CIE International A-level Biology TOPIC 3 REVISION (Enzymes)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 3 REVISION (Enzymes)

(0)
This engaging REVISION lesson has been designed to cover the content of topic 3 (Enzymes) of the CIE International A-level Biology specification. A wide range of activities have been written into the lesson to engage the students whilst they assess their understanding of the topic content. All of the exam questions contain detailed answers which students can use to identify missed marks and quiz competitions are used, like FROM NUMBERS 2 LETTERS (shown in the cover image) to recall key concepts and check on the finer details. The lesson has been planned to cover as much of the specification content as possible but the following sub-topics have received particular attention: Enzymes as globular proteins that act as biological catalysts Formation of the enzyme-substrate complex The lock and key theory and induced-fit hypothesis Competitive and non-competitive inhibitors The Michaelis-Menten constant The effect of changes in pH and temperature on the tertiary structure of the enzymes The immobilisation of enzymes using alginate Time has been taken in the design to ensure that links to other topics are made. For example, when checking the knowledge of the denaturation of enzymes due to pH and temperature, the bonds found in the tertiary structure are recalled and considered in depth.
Genetic terminology (AQA A-level Biology)
GJHeducationGJHeducation

Genetic terminology (AQA A-level Biology)

(0)
This lesson acts as an introduction to topic 7.1 of the AQA A-level Biology specification and focuses on 16 key genetic terms that will support students in forming a deep understanding of inheritance. As some of these terms were met at GCSE, this fully-resourced lesson has been designed to include a wide range of activities that build on this prior knowledge and provide clear explanations as to their meanings as well as numerous examples of their use in both questions and exemplary answers. The main task provides the students with an opportunity to apply their understanding by recognising a dominance hierarchy in a multiple alleles characteristic and then calculating a phenotypic ratio when given a completed genetic diagram. Other tasks include prior knowledge checks, discussion points to encourage students to consider the implementation of the genetic terms and quiz competitions to introduce new terms, maintain engagement and act as an understanding check. The 16 terms are genome, gene, chromosome, gene locus, homologous chromosomes, alleles, dominant, recessive, genotype, codominance, multiple alleles, autosomes, sex chromosomes, phenotype, homozygous and heterozygous
Genetic diagrams and phenotypic ratios (OCR A-level Biology A module 6.1.2 [b])
GJHeducationGJHeducation

Genetic diagrams and phenotypic ratios (OCR A-level Biology A module 6.1.2 [b])

6 Resources
Each of the 6 lessons within this bundle are fully-resourced and cover the content of point (b) of module 6.1.2 of the OCR A-level Biology A specification which states that students should be able to use genetic diagrams and phenotypic ratios to show patterns of inheritance and explain linkage and epistasis. Students are guided through the construction of the genetic diagrams for the inheritance of one or two genes and are shown how to analyse the phenotypic ratio to determine whether linkage has occurred or whether a gene interaction is involved. The wide range of activities which includes exam questions with visual mark schemes, differentiated tasks and quiz competitions will maintain engagement whilst providing the students with opportunities to assess their progress against the current topic.
Topic 16.2 [b]: The roles of genes in determining the phenotype  (CIE A-level Biology)
GJHeducationGJHeducation

Topic 16.2 [b]: The roles of genes in determining the phenotype (CIE A-level Biology)

5 Resources
Each of the 5 lessons within this bundle are fully-resourced and cover the content of point (b) of topic 16.2 of the CIE A-level Biology specification which states that students should be able to use genetic diagrams to solve problems which involve the following: monohybrid and dihybrid crosses autosomal linkage sex-linkage codominance multiple alleles gene interactions Students are guided through the construction of the genetic diagrams for the inheritance of one or two genes and are shown how to analyse the phenotypic ratios to determine whether linkage has occurred or whether a gene interaction is involved. The wide range of activities which includes exam questions with visual mark schemes, differentiated tasks and quiz competitions will maintain engagement whilst providing the students with opportunities to assess their progress against the current topic
Topic 16 REVISION: Inherited change (CIE A-level Biology)
GJHeducationGJHeducation

Topic 16 REVISION: Inherited change (CIE A-level Biology)

(0)
This fully-resourced REVISION lesson has been designed to enable the students to challenge their knowledge of the content of topic 16 (Inherited change) of the CIE A-level Biology specification. The engaging PowerPoint and accompanying differentiated worksheets will motivate the students whilst they assess their understanding of the content and identify any areas which may require further attention. The wide range of activities have been written to cover as much of the topic as possible but the following specification points have been given particular focus: Homologous pairs of chromosomes The meanings of haploid and diploid The behaviour of chromosomes in meiosis Crossing over and random assortment as causes of genetic variation The use of key genetic terminology The use of genetic diagrams to solve problems including autosomal and sex-linkage, dihybrid inheritance and gene interactions The use of the chi-squared test Gene mutations Genetic control of protein production in prokaryotes Gibberellins and how they cause the breakdown of DELLA proteins Due to the extensiveness of this resource, it is likely that it will take a number of lessons to go through all of the activities
Codominance and multiple alleles (CIE International A-level Biology)
GJHeducationGJHeducation

Codominance and multiple alleles (CIE International A-level Biology)

(0)
This fully-resourced lesson explores the inheritance of genetic characteristics that involve multiple alleles and codominant alleles. The engaging and detailed PowerPoint and differentiated worksheets have been designed to cover the part of point 16.2 (b) of the CIE International A-level Biology specification which states that students should be able to use genetic diagrams to solve problems which involve codominance and multiple alleles. The main part of the lesson uses the inheritance of the ABO blood groups to demonstrate how the three alleles that are found at the locus on chromosome 9 and the codominance of the A and B alleles affects the phenotypes. Students are guided through the construction of the different genotypes and how to interpret the resulting phenotype. They are challenged to use a partially completed pedigree tree to determine the blood group for some of the family members and to explain how they came to their answer. To further challenge their ability to apply their knowledge, a series of questions about multiple alleles and codominance in animals that are not humans are used. All of the questions are followed by clear, visual mark schemes to allow the students to assess their progress and address any misconceptions
Gene interactions (CIE International A-level Biology)
GJHeducationGJHeducation

Gene interactions (CIE International A-level Biology)

(0)
This fully-resourced lesson explores how the presence of particular alleles at one locus can mask the expression of alleles at a second locus in gene interactions. The detailed and engaging PowerPoint and associated resources have been designed to cover the part of point 16.2 (b) of the CIE International A-level Biology specification which states that students should be able to use genetic diagrams to solve problems that involve gene interactions. This is a topic which students tend to find difficult, and therefore the lesson was written to split the topic into small chunks where examples of dominant, recessive and complimentary gene interactions are considered, discussed at length and then explained. Understanding checks, in various forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. There are regular links to related topics such as dihybrid inheritance so that students can meet the challenge of interpreting genotypes and link to the different types of interactions
Hardy-Weinberg principle (AQA A-level Biology)
GJHeducationGJHeducation

Hardy-Weinberg principle (AQA A-level Biology)

(0)
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equation to calculate the frequency of alleles, genotypes and phenotypes in a population. Both the detailed PowerPoint and differentiated practice questions on a worksheet have been designed to cover the 2nd part of point 7.2 of the AQA A-level Biology specification which expects students to be able to use this mathematical model The lesson begins by looking at the equation and ensuring that students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged.
Monohybrid & Dihybrid crosses (CIE A-level Biology)
GJHeducationGJHeducation

Monohybrid & Dihybrid crosses (CIE A-level Biology)

(0)
This lesson guides students through the use of genetic diagrams to solve problems involving monohybrid and dihybrid crosses. The engaging PowerPoint and accompanying worksheets have been designed to cover the part of topic 16.2 (b) of the CIE A-level Biology specification which involves the inheritance of one or two genes As you can see from the cover image, this lesson uses a step by step guide to go through each important stage of drawing the genetic cross. Extra time is taken over step 2 which involves writing out the different possible gametes that a parent can produce. This is the step where students most commonly make mistakes so it is critical that the method is understood. Helpful hints are also given throughout, such as only writing out the different possible gametes in order to avoid creating unnecessary work. Students are shown how to answer an example question so that they can visualise how to set out their work before they are challenged to try two further questions. This first of these is differentiated so that even those students who find this very difficult are able to access the learning. The final question will enable the students to come up with the ratio 9:3:3:1 and they will be shown how they can recognise when this should be the expected ratio as this links to the chi-squared test which is covered later in the topic.
Stabilising, directional and disruptive selection (OCR A-level Biology)
GJHeducationGJHeducation

Stabilising, directional and disruptive selection (OCR A-level Biology)

(0)
This engaging and fully-resourced lesson looks at examples of stabilising, directional and disruptive selection as the three main types of selection. The PowerPoint and accompanying resources have been designed to cover the 1st part of point 6.1.2 (e) of the OCR A-level Biology specification which states that students should be able to demonstrate and apply an understanding of the factors that affect the evolution of a species. The lesson begins by making a link to a topic from module 4 as the students are challenged to use the mark, release, recapture method to calculate numbers of rabbits with different coloured fur in a particular habitat. Sketch graphs are then constructed to show the changes in the population size in this example. A quick quiz competition is used to engage the students whilst introducing the names of the three main types of selection before a class discussion point encourages the students to recognise which specific type of selection is represented by the rabbits. Key terminology including intermediate and extreme phenotypes and selection pressure are used to emphasise their importance during explanations. A change in the environment of the habitat and a change in the numbers of the rabbits introduces directional selection before students will be given time to discuss and to predict the shape of the sketch graph for disruptive selection. Students are challenged to apply their knowledge in the final task of the lesson by choosing the correct type of selection when presented with details of a population and answer related questions. This lesson has been designed to tie in with another uploaded lesson on genetic drift which covers the second part of this specification point.