Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Edexcel GCSE Combined Science Bio Topic 7 REVISION (Animal coordination, control and homeostasis)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Bio Topic 7 REVISION (Animal coordination, control and homeostasis)

(1)
This REVISION resource has been written with the aim of motivating the students whilst they are challenged on their knowledge of the content in Biology TOPIC 7 (Animal coordination, control and homeostasis) of the Edexcel GCSE Combined Science specification. The resource contains an engaging and detailed PowerPoint (73 slides) and accompanying worksheets, some of which are differentiated to provide extra scaffolding to students when it is required. The wide range of activities have been designed to cover as much of topic 7 as possible but the following sub-topics have been given a particular focus: The causes and treatments of diabetes type I and II The control of blood glucose concentration through the release of insulin and glucagon The importance of homeostasis Calculating BMI The hormones involved in the female menstrual cycle The use of clomifene therapy and IVF in assisted reproductive therapy Hormonal and barrier methods of contraception The actions of adrenaline There is a large emphasis on mathematical skills in the new specification and these are tested throughout the lesson. This resource is suitable for use at the end of topic 7, in the lead up to mocks or in the preparation for the final GCSE exams.
Mitosis and Meiosis REVISION (AQA GCSE)
GJHeducationGJHeducation

Mitosis and Meiosis REVISION (AQA GCSE)

(0)
Students commonly confuse the two forms of cell division, so this revision lesson has been designed to address those mistakes and misconceptions. The PowerPoint and accompanying resources have been planned to challenge the students on their understanding of the details of points 1.2.1, 1.2.2 and 6.1.2 of the AQA GCSE biology and combined science specifications. The lesson goes through each of the three stages of the cell cycle including mitosis, to ensure that students can describe the key events and state the outcome in terms of the daughter cells. The lesson contains a series of tasks which include exam questions, discussions and a quiz which allow the students to assess their understanding. The final part of the lesson focuses on meiosis and specifically the differences to mitosis in terms of the number of cell divisions, the gametes formed, and their genetic make up. This lesson has been designed to be used for revision purposes in the lead up to the GCSE exams or in preparation for an end of topic test or mocks.
SENSE ORGANS and the NERVOUS SYSTEM (WJEC GCSE Biology)
GJHeducationGJHeducation

SENSE ORGANS and the NERVOUS SYSTEM (WJEC GCSE Biology)

(1)
This resource contains a detailed and engaging PowerPoint and accompanying worksheets, all of which have been designed to cover points 2.5 (a & b) of the WJEC GCSE Biology specification. This specification point states that students should be able to apply their knowledge and understanding of sense organs responding to specific stimuli and the CNS and nerves forming the nervous system. The lesson begins by introducing the term stimuli and then a quick quiz is used to get their competitive juices flowing as they have to react 1st to recognise the 5 different stimuli. Students will learn that sense organs are groups of receptor cells that respond to one or a few of these stimuli and they will form sentences to describe this role. Moving forwards, the link is made to the nervous system and how electrical impulses conducted on neurones allows communication between these receptors and the CNS and between the CNS and the effectors. At this point, students are challenged on their understanding of the functions of the structures in a nervous reaction as they have to put them into the correct order. They are given a quick and easy way to recognise the difference between a sensory and motor neurone on a diagram and how to use the function to show the direction of conduction. Time is taken to look at the role of a synapse in a reaction. The main task challenges the students to apply their knowledge to the example of a fly being flicked off the arm by forming a full description. This lesson contains a wide range of activities which include quiz competitions to introduce key terms in a fun and memorable way as well as understanding and prior knowledge checks so that students can assess their grasp of the critical content. It has been written for students studying the WJEC GCSE Biology course but is also suitable for younger students looking at the nervous system or A-level students who need to recall the key details and structures
Sexual reproduction
GJHeducationGJHeducation

Sexual reproduction

(1)
A concise lesson presentation (26 slides) that looks at how sexual reproduction leads to variation and considers the advantages and disadvantages of this form of reproduction. The lesson begins by getting the students to recognise that sexual reproduction needs two parents and therefore two gametes. Time is taken to ensure that students understand that these gametes are produced by meiosis and therefore contain the haploid number of chromosomes. Key terminology like haploid and zygote are used throughout the lesson. This lesson is suitable for both KS3 and GCSE students
Properties and roles of water (OCR A-level Biology)
GJHeducationGJHeducation

Properties and roles of water (OCR A-level Biology)

(1)
This detailed lesson describes the relationship between the structure, properties and roles of water for living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point 2.1.2 (a) of the OCR A-level Biology A course and has been specifically designed to ensure that each role is illustrated using an example in prokaryotes or eukaryotes. As this is the first lesson in the biological molecules sub-module (2.1.2), which is a topic that students tend to find difficult or potentially less engaging, the planning has centred around the inclusion of a wide variety of tasks to cover the content whilst maintaining motivation and engagement. These tasks include current understanding and prior knowledge checks, discussion points and quick quiz competitions to introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples: As a solvent to act as a transport medium in blood plasma Molecules are attracted by cohesive forces to enable transport in the xylem High latent heat of vaporisation for thermoregulation High specific heat capacity for the maintenance of a stable environment Peak density in the liquid form allowing ice to float The final part of the lesson introduces condensation and hydrolysis reactions and students will learn that a clear understanding of these reactions is fundamental as they will reappear throughout the module in the synthesis and breakdown of biological molecules.
Semi-conservative replication of DNA (CIE International A-level Biology)
GJHeducationGJHeducation

Semi-conservative replication of DNA (CIE International A-level Biology)

(1)
This fully-resourced lesson describes how DNA is replicated during interphase and explains why it is semi-conservative replication. Both the detailed PowerPoint and accompanying resources have been designed to cover the details of point 6.1 © of the CIE International A-level Biology specification The main focus of this lesson is the roles of DNA helicase in breaking the hydrogen bonds between nucleotide bases and DNA polymerase incorporating the phosphorylated nucleotides into the sequence. Students are also introduced to DNA ligase to enable them to understand how this enzyme functions to join the nucleic acid fragments. Time is taken to explain key details such as the assembly of strands in the 5’-to-3’ direction so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure, phosphorylated nucleotides and hydrolysis reactions through a range of exam questions and answers are displayed so any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
Sex linkage (Edexcel A-level Biology B)
GJHeducationGJHeducation

Sex linkage (Edexcel A-level Biology B)

(1)
This fully-resourced lesson describes the inheritance of genes that are carried on the X chromosome and includes a particular focus on haemophilia in humans. The detailed PowerPoint and associated differentiated resources have been designed to cover specification point 8.2 (v) as detailed in the Edexcel A-level Biology B specification. Key genetic terminology is used throughout and the lesson begins with a check on their ability to identify the definition of homologous chromosomes. Students will recall that the sex chromosomes are not fully homologous and that the smaller Y chromosome lacks some of the genes that are found on the X. This leads into one of the numerous discussion points, where students are encouraged to consider whether females or males are more likely to suffer from sex-linked diseases and they will be challenged to find evidence to support this decision later in the lesson. In terms of humans, the lesson focuses on haemophilia and red-green colour blindness and a step-by-step guide is used to demonstrate how these specific genetic diagrams should be constructed and how the phenotypes should then be interpreted. The final tasks of the lesson challenge the students to carry out a dihybrid cross that involves a sex-linked disease and an autosomal disease before applying their knowledge to a question about chickens and how the rate of feather production in chicks can be used to determine gender. All of the tasks are differentiated so that students of differing abilities can access the work and all exam questions have fully-explained, visual markschemes to allow them to assess their progress and address any misconceptions
Blood clotting (Edexcel International A-level Biology)
GJHeducationGJHeducation

Blood clotting (Edexcel International A-level Biology)

(1)
This fully-resourced lesson describes the key steps in the blood clotting process, including the roles of thromboplastin, thrombin and fibrin. The engaging PowerPoint and accompanying worksheets have been primarily designed to cover the content detailed in point 1.11 of the Edexcel A-level International specification but time has been taken to look at haemophilia as a sex-linked disease so that students are prepared for when this is covered in greater detail in topic 3. The lesson begins with the introduction of clotting factors as integral parts of the blood clotting process and explains that factor III, thromboplastin, needs to recalled as well as the events that immediately precede and follows its release. Students will learn how damage to the lining and the exposure of collagen triggers the release of this factor and how a cascade of events then results. Quick quiz rounds and tasks are used to introduce the names of the other substances involved which are prothrombin, thrombin, fibrinogen and fibrin. In a link to the upcoming topic of proteins, students will understand how the insolubility of fibrin enables this mesh of fibres to trap platelets and red blood cells and to form the permanent clot. In the previous lessons, students described the events in atherosclerosis and a link is made to the role of blood clotting in CVD. The final part of the lesson introduces haemophilia as a sex-linked disease and students are challenged to apply their knowledge to an unfamiliar situation as they have to write genotypes and determine phenotypes before explaining why men are more likely to suffer from this disease than women.
Osmoregulation (CIE International A-level Biology)
GJHeducationGJHeducation

Osmoregulation (CIE International A-level Biology)

(2)
This is a highly-detailed and fully-resourced lesson which covers the detail of specification point 14.1 (g) of the CIE International A-level Biology specification which states that students should be able to describe the roles of the hypothalamus, posterior pituitary, ADH and collecting ducts in osmoregulation. Students learnt about the principles of homeostasis and negative feedback in an earlier lesson, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work. This lesson has been written for students studying on the CIE International A-level Biology course and ties in closely with the other uploaded lessons on the structure of the kidney, ultrafiltration and selective reabsorption
The sliding filament model of MUSCULAR CONTRACTION (OCR A-level Biology A)
GJHeducationGJHeducation

The sliding filament model of MUSCULAR CONTRACTION (OCR A-level Biology A)

(1)
This is a fully-resourced lesson that covers the content of specification point 5.1.5 (l) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the sliding filament model of muscular contraction. The wide range of activities included in the lesson will engage and motivate the students whilst the understanding and previous knowledge checks will not only allow them to assess their progress but also challenge them to make links to other Biology topics. The lesson begins by using an idea from the quiz show POINTLESS to get them to recognise that myology is the study of muscles. This leads nicely into the next task, where they have to identify three further terms (from 12) which will also begin with myo and are the names of structures involved in the arrangement of skeletal muscle. Key terminology is used throughout the lesson so that students feel comfortable when they encounter this in questions. Students are introduced to the sarcomere and the bands and zones that are found within a myofibril so they can discover how most of these structures narrow but the A band, which is the length of the myosin filament, stays the same length between resting and contracted muscle. This has been designed to lead into a discussion point where they are encouraged to consider how the sarcomere can narrow but the lengths of the myofilaments can remain the same. The main task of the lesson involves the formation of a bullet point description of the sliding filament model where one event is the trigger for the next. Time is taken during this section to focus on the involvement of the calcium ions but also ATP and the idea of the sources of this molecule, including creatine phosphate, are discussed in more detail later in the lesson. The final part of the lesson involves students having to apply their knowledge by describing the effect on muscle contraction when a part of a structure is unable to function correctly. This lesson has been designed for students studying the OCR A-level Biology course and ties in nicely with the other lessons on this particular topic such as neuromuscular junctions as well as the other uploaded lessons from module 5
Transcription factors (Edexcel A-level Biology A)
GJHeducationGJHeducation

Transcription factors (Edexcel A-level Biology A)

(1)
This fully-resourced lesson describes how genes can be switched on and off by DNA transcription factors, including hormones. The PowerPoint and accompanying resources have been designed to cover point 7.16 as detailed in the Pearson Edexcel A-level Biology A specification but also links to topic 3 when the lac operon was described in relation to differential gene expression. This is one of the more difficult concepts in this A-level course and therefore key points are reiterated throughout this lesson to increase the likelihood of student understanding and to support them when trying to make links to actual biological examples in living organisms. There is a clear connection to transcription and translation as covered in topic 2, so the lesson begins by reminding students that in addition to the structural gene in a transcription unit, there is the promotor region where RNA polymerase binds. Students are introduced to the idea of transcription factors and will understand how these molecules can activate or repress transcription by enabling or preventing the binding of the enzyme. At this point, students are challenged on their current understanding with a series of questions about DELLA proteins so they can see how these molecules prevent the binding of RNA polymerase. Their remainder of the lesson looks at the ER receptor and students will learn that this factor is normally inactive due to an inhibitor being attached. This will then introduce oestrogen as the hormone which binds to the receptor, causing the inhibitor to be released and activating the factor. The main task then challenges them to order statements containing the detailed events that follow the binding of oestrogen. The lesson in topic 3 on gene expression which describes the lac operon has also been uploaded for free.
Oxidative phosphorylation (AQA A level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (AQA A level Biology)

(0)
This detailed and clear lesson describes and explains how the electron transport chain and the chemiosmotic theory are involved in the synthesis of ATP by oxidative phosphorylation. The PowerPoint has been designed to cover the sixth part of point 5.2 of the AQA A-level Biology A specification and also looks at the role of the enzyme, ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 steps and at each point, key facts are discussed and explored in detail to enable a deep understanding to be developed. Students will see how the proton gradient is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP. Understanding checks are included throughout the lesson to enable the students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis, the Link reaction and Krebs cycle and anaerobic respiration.
Light-independent reactions (Edexcel A-level Biology A)
GJHeducationGJHeducation

Light-independent reactions (Edexcel A-level Biology A)

(1)
This lesson describes the light-independent reactions of photosynthesis as reduction of carbon dioxide using the products of the light-dependent reactions. The detailed PowerPoint and accompanying resources have been designed to cover point 5.8 (i) of the Pearson Edexcel A-level Biology A (Salters-Nuffield) specification and therefore describes carbon fixation in the Calvin cycle and the roles of GP, GALP, RuBP and RUBISCO). The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and GALP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RUBISCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to GALP The use of the majority of the GALP in the regeneration of RuBP A step-by-step guide, with selected questions for the class to consider together, is used to show how 6 turns of the cycle are needed to form the GALP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed. This lesson has been specifically written to tie in with the previous lessons on the structure of a chloroplast and the light-dependent reactions as well as the upcoming lesson on the products of the light-independent reactions.
Polysaccharides (AQA A-level Biology)
GJHeducationGJHeducation

Polysaccharides (AQA A-level Biology)

(1)
This detailed and fully-resourced lesson describes the relationship between the structure and function of the polysaccharides: glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover the third part of point 1.2 of the AQA A-level Biology specification and clear links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. By the end of this lesson, students should understand how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also whether it spirals or not. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses once they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. In the final part of the lesson, time is taken to focus on the formation of cellulose microfibrils and macrofibrils to explain how plant cells have the additional strength needed to support the whole plant. Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete
Nucleotides (OCR A-level Biology)
GJHeducationGJHeducation

Nucleotides (OCR A-level Biology)

(1)
This detailed lesson describes the structure of a nucleotide and a phosphorylated nucleotide and explains how polynucleotides are synthesised and broken down. The engaging PowerPoint has been designed to cover points [a], [b] and [c] of module 2.1.3 as detailed in the OCR A-level Biology A specification and links are made throughout to earlier topics such as biological molecules. Students were introduced to the term monomer and nucleotide in the previous module, so the start of the lesson challenges them to recognise this latter term when only the letters U, C and T are shown. This has been designed to initiate conversations about why only these letters were used so that the nitrogenous bases can be discussed later in greater detail. Moving forwards, students will learn that a nucleotide is the monomer to a polynucleotide and that deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are two examples of this type of polymer. The main part of the lesson has been filled with various tasks that explore the structural similarities and structural differences between DNA and RNA. This begins by describing the structure of a nucleotide as a phosphate group, a pentose sugar and a nitrogenous base. Time is taken to consider the details of each of these three components which includes the role of the phosphate group in the formation of a phosphodiester bond between adjacent nucleotides on the strand. At this point students are challenged on their understanding of condensation reactions and have to identify how the hydroxyl group associated with carbon 3 is involved along with the hydroxyl group of the phosphoric acid molecule. A number of quiz rounds are used during this lesson, as a way to introduce key terms in a fun and memorable way. One of these rounds introduces adenine and guanine as the purine bases and thymine, cytosine and uracil as the pyrimidine bases and the students are shown that their differing ring structures can be used to distinguish between them. The remainder of the lesson focuses on ADP and ATP as phosphorylated nucleotides and links are made to the hydrolysis of this molecule for energy driven reactions in cells such as active transport
The gross and fine anatomy of the kidney
GJHeducationGJHeducation

The gross and fine anatomy of the kidney

(1)
This lesson has been designed to act as an introduction to the anatomy of the kidney before students move on to study each structure of the nephron in more detail. The lesson considers both the gross anatomy, in terms of the renal cortex and medulla and then looks at the functional unit of the nephron. The function of the different parts of the nephron are briefly discussed and the features that relate to function are considered. This lesson has been designed for A-level students but could be used with higher ability GCSE students.
Control of blood glucose REVISION (GCSE)
GJHeducationGJHeducation

Control of blood glucose REVISION (GCSE)

(0)
This engaging revision lesson challenges students on their understanding of the homeostatic control system that regulates blood glucose concentration. The PowerPoint and accompanying resources have been designed to check on the understanding of the details in specification point 5.3.2 of the AQA biology and combined science specifications. A common mistake in this topic is that students confuse glycogen with glucagon and use them incorrectly so time is spent to ensure that students recognise the difference between the complex carbohydrate and the hormone. In addition to challenging the students on their knowledge of this control system, the following linked topics are also challenged: key biological terms (beginning with G) the digestive system structures in a control system
Arteries, veins and capillaries (CIE International A-level Biology)
GJHeducationGJHeducation

Arteries, veins and capillaries (CIE International A-level Biology)

(2)
This fully-resourced lesson explains the relationship between the structure and function of arteries, veins and capillaries. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 8.1 © of the CIE International A-level Biology specification. This lesson has been written to build on any prior knowledge from GCSE to enable students to fully understand why a particular type of blood vessel has particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of the GUESS WHO game is used to introduce smooth muscle and collagen in the tunica media and externa and again the reason for their presence is explored and explained. Moving forwards, the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels. The final part of the lesson looks at the role of the capillaries in exchange. Links are made to diffusion to ensure that students can explain how the red blood cells pressing against the endothelium results in a short diffusion distance. It is estimated that it will take about 2 hours of allocated A-level Biology teaching time to cover the detail included in this lesson
Thermoregulation (Edexcel GCSE Biology)
GJHeducationGJHeducation

Thermoregulation (Edexcel GCSE Biology)

(1)
This lesson has been designed to cover the content in points 7.11 and 7.12 of the Edexcel GCSE Biology specification which states that students should be able to explain how thermoregulation takes place, with particular reference to the role of the skin. This resource contains an engaging PowerPoint and a differentiated worksheet, which together use a wide range of activities to motivate the students and to engage them in the content matter. The lesson begins by challenging the students to calculate a number from a series of biological based statements. This number is 37 which introduces the students to this temperature as the set-point at which homeostasis acts to maintain the body temperature. At this point of the lesson, a number of prior knowledge checks are used to challenge the students on their recall of the parts of a control system as well as challenging them to explain why temperatures above or below this set point can be problematic for body reactions. The main part of the lesson goes through the steps in the body’s detection and response to an increase in temperature and students will be introduced to the range of structures involved. Time is taken to focus on the role of the skin as an effector and key details about vasodilation and the production of sweat are discussed at length. The final task challenges the students to use all of the information from earlier in the lesson to write a detailed description of how the body detects and responds to a decrease in temperature. This lesson has been written for students studying on the Edexcel GCSE Biology course but is also suitable for older students who are studying thermoregulation and need to recall the key details.
Temperature control in ECTOTHERMS (OCR A-level Biology A)
GJHeducationGJHeducation

Temperature control in ECTOTHERMS (OCR A-level Biology A)

(1)
This concise lesson has been written to cover specification point 5.1.1 (d) of the OCR A-level Biology A specification which states that students should be able to apply an understanding of the behavioural responses in temperature control in ectotherms. The main aim when designing the lesson was to support students in making sensible and accurate decisions when challenged to explain why these types of organisms have chosen to carry out a particular response. A wide range of animals are used so students are engaged in the content matter and are prepared for the unfamiliar situations that they will encounter in the final exam. Time is also taken to compare ectotherms against endotherms so that students can recognise the advantages and disadvantages of ectothermy. This lesson has been written for A-level students studying on the OCR A-level Biology A course. Lessons on temperature control in endotherms and the principles of homeostasis and cell signalling, which are also in module 5.1.1, are also available so please download those too as they will allow students to make connections between one lesson, the previous and the next.