Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic 4: Plant structure and function, Biodiversity and Conservation (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Topic 4: Plant structure and function, Biodiversity and Conservation (Edexcel Int. A-level Biology)

9 Resources
All of the 9 lessons that are included in this bundle are highly detailed and are fully-resourced. The lesson PowerPoints and their accompanying worksheets contain a wide range of tasks that will engage and motivate the students whilst covering the following specification points as set out in topic 4 of the Edexcel International A-level Biology specification: The structure and ultrastructure of plant cells The function of the organelles in plant cells The structure and function of starch and cellulose The similarities and differences between the structures, position and functions of sclerenchyma, xylem and phloem Understand that classification is a means of organising the variety of life based on relationships between organisms New taxonomic groupings The meaning of the terms biodiversity and endemism Know how biodiversity can be measured within a habitat and within a species Comparing biodiversity between habitats using the index of diversity The adaptations of organisms to their environment Use of the Hardy-Weinberg equation Changes in allele frequency are the result of mutation and natural selection Evaluate the methods used by zoos and seed banks in the conservation of endangered species and their genetic diversity If you would like to sample the quality of lessons in this bundle then download the cellulose & starch and modern-day classification lessons as these have been uploaded for free
5.1.2: Excretion as an example of homeostatic control (OCR A-level biology)
GJHeducationGJHeducation

5.1.2: Excretion as an example of homeostatic control (OCR A-level biology)

9 Resources
All 9 lessons included in this bundle are filled with a variety of tasks to maintain engagement whilst covering the detailed content of module 5.1.2 of the OCR A-level biology specification. There are also multiple understanding checks and prior knowledge checks, with answers embedded into the PowerPoint, which allow the students to assess their progress against the current topic and test their ability to make links to previously covered content. This module titled “Excretion as an example of homeostatic control”, considers the removal of the products of cell metabolism and explores the role of the liver, kidneys (and skin) in this process. The functions of the liver and structure of the kidney lessons have been uploaded for free, so you could download these first if you would like to view the quality of this bundle. The specification points not directly covered by the lessons in this bundle are: (b) (ii) [c) (ii) [c] (iii) (f)
Topic 6.4: Homeostasis is the maintenance of a stable internal environment (AQA A-level Biology)
GJHeducationGJHeducation

Topic 6.4: Homeostasis is the maintenance of a stable internal environment (AQA A-level Biology)

8 Resources
Each of the 8 lessons that are included in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 6.4 (Homeostasis is the maintenance of a stable internal environment) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include: The principles of homeostasis The importance of maintaining temperature and blood glucose concentrations Negative feedback systems The action of insulin, glucagon and the role of the liver in blood glucose control The role of adrenaline The causes of type I and II diabetes and their control The structure of the nephron and its numerous roles The formation of the glomerular filtrate by ultrafiltration Reabsorption of glucose and water by the proximal convoluted tubule Maintaining a gradient of sodium ions in the medulla by the loop of Henle The roles of the hypothalamus, the posterior pituitary gland and ADH in osmoregulation The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics If you would like to see the quality of the lessons, download the ultrafiltration lesson which is free
Module 2.1.2: Biological molecules (OCR A-level Biology A)
GJHeducationGJHeducation

Module 2.1.2: Biological molecules (OCR A-level Biology A)

13 Resources
The biological molecules sub-module is incredibly important, not just because it is found near to the start of the course, but also because of its detailed content which must be well understood to promote success with most of the other OCR A-level Biology A modules. Many hours of intricate planning have gone into the design of all of the 13 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions. The following specification points are covered by the lessons within this bundle: The relationship between the properties of water and its roles for living organisms The concept of monomers and polymers and the importance of condensation and hydrolysis reactions The chemical elements that make up biological molecules The ring structure and properties of glucose and structure of ribose The synthesis and breakdown of a disaccharide and a polysaccharide The relationship between the structures, properties and functions of starch, glycogen and cellulose The structure of a triglyceride and a phospholipid as macromolecules The synthesis and breakdown of triglycerides The relationship between the properties and functions of triglycerides, phospholipids and cholesterol The general structure of an amino acid The synthesis and breakdown of dipeptides and polypeptides The levels of protein structure The structure and function of globular proteins The properties and functions of fibrous proteins The key inorganic ions that are involved in biological processes How to carry out and interpret the results of the chemical tests for proteins, reducing and non-reducing sugars, starch and lipids Due to the detail of each of these lessons, it is estimated that it will take in excess of 6 weeks of allocated teaching time to cover the content. If you would like to see the quality of the lessons, download the properties of water, glucose & ribose, amino acids and dipeptides and polypeptides lessons as these have been shared for free
Topic B9: Ecosystems and material cycles (Edexcel GCSE Biology)
GJHeducationGJHeducation

Topic B9: Ecosystems and material cycles (Edexcel GCSE Biology)

9 Resources
This bundle of 9 lessons covers a lot of the content in Topic B9 (Ecosystems and material cycles) of the Edexcel GCSE Biology specification. The topics covered within these lessons include: Levels of organisation in an ecosystem Biotic and abiotic factors Interdependence Types of ecological relationships Sampling techniques Efficiency of biomass transfer Human impacts on ecosystems Maintaining and increasing biodiversity The carbon cycle The nitrogen cycle Decomposition The rate of decay All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B3: Genetics (Edexcel GCSE Biology)
GJHeducationGJHeducation

Topic B3: Genetics (Edexcel GCSE Biology)

10 Resources
This bundle of 10 lessons covers a lot of the content in Topic B3 (Genetics) of the Edexcel GCSE Biology specification. The topics covered within these lessons include: Advantages and disadvantages of asexual reproduction Advantages and disadvantages of sexual reproduction The role of meiosis The structure of DNA Transcription and translation Understanding and using genetic terminology Monohybrid inheritance Sex determination Sex linkage The causes of variation All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
DNA, RNA, Genetics and Inheritance (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

DNA, RNA, Genetics and Inheritance (Edexcel Int. A-level Biology)

16 Resources
This lesson bundle contains 16 lessons which have been designed to cover the Edexcel International A-level Biology specification points which focus on the structure of DNA and RNA, their roles in replication and protein synthesis, and genetics and inheritance. The lesson PowerPoints are highly detailed, and along with their accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content found in topics 2, 3 and 6 of the course: 2.9 (i): Know the basic structure of mononucleotides (deoxyribose or ribose linked to a phosphate and a base, including thymine, uracil, adenine, cytosine or guanine) and the structures of DNA and RNA (polynucleotides composed of mononucleotides linked by condensation reactions to form phosphodiester bonds) 2.9 (ii): Know how complementary base pairing and the hydrogen bonding between two complementary strands are involved in the formation of the DNA double helix 2.10 (i): Understand the process of DNA replication, including the role of DNA polymerase 2.11: Understand the nature of the genetic code 2.12: Know that a gene is a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain 2.13 (i): understand the process of protein synthesis (transcription and translation), including the role of RNA polymerase, translation, messenger RNA, transfer RNA, ribosomes and the role of start and stop codons 2.13 (ii): Understand the roles of the DNA template (antisense) strand in transcription, codons on messenger RNA and anticodons on transfer RNA 2.14 (i): Understand how errors in DNA replication can give rise to mutations (substitution, insertion and deletion of bases) 2.14 (ii): Know that some mutations will give rise to cancer or genetic disorders, but that many mutations will have no observable effect 2.15 (i): Know the meaning of the terms: gene, allele, genotype, phenotype, recessive, dominant, codominance, homozygote and heterozygote 2.15 (ii): Understand patterns of inheritance, including the interpretation of genetic pedigree diagrams, in the context of monohybrid inheritance 2.15 (iii): Understand sex linkage on the X chromosome, including red-green colour blindness in humans 2.16: Understand how the expression of a gene mutation in people with cystic fibrosis impairs the functioning of the gaseous exchange, digestive and reproductive systems 2.17 (i): Understand the uses of genetic screening, including the identification of carriers, pre-implantation genetic diagnosis (PGD) and prenatal testing, including amniocentesis and chorionic villus sampling 2.17 (ii): Understand the implications of prenatal genetic screening 3.9 (i): Know that a locus is the location of genes on a chromosome 3.9 (ii): Understand the linkage of genes on a chromosome 3.18: Understand how cells become specialised through differential gene expression, producing active mRNA, leading to the synthesis of proteins which, in turn, control cell processes or determine cell structure in animals and plants 3.19: Understand how one gene can give rise to more than one protein through posttranscriptional changes to messenger RNA (mRNA). 3.20 (i): Phenotype is an interaction between genotype and the environment 3.21: Understand how some phenotypes are affected by multiple alleles for the same gene at many loci (polygenic inheritance) as well as the environment and how this can give rise to phenotypes that show continuous variation 6.17: Know how DNA can be amplified using the polymerase chain reaction (PCR)
Nucleic acids, Genetics and Inheritance (Edexcel SNAB)
GJHeducationGJHeducation

Nucleic acids, Genetics and Inheritance (Edexcel SNAB)

16 Resources
This lesson bundle contains 16 lessons which have been designed to cover the Pearson Edexcel A-level Biology A (Salters Nuffield) specification points which focus on the structure of DNA and RNA, their roles in replication and protein synthesis, and genetics and inheritance. The lesson PowerPoints are highly detailed, and along with their accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content found in topics 2, 3 and 6 of the course: 2.5 (i): Know the basic structure of mononucleotides (deoxyribose or ribose linked to a phosphate and a base, including thymine, uracil, cytosine, adenine or guanine) and the structures of DNA and RNA (polynucleotides composed of mononucleotides linked through condensation reactions) 2.5 (ii): Know how complementary base pairing and the hydrogen bonding between two complementary strands are involved in the formation of the DNA double helix 2.6 (i): Understand the process of protein synthesis (transcription) including the role of RNA polymerase, translation, messenger RNA, transfer RNA, ribosomes and the role of start and stop codons 2.6 (ii): Understand the roles of the DNA template (antisense) strand in transcription, codons on messenger RNA and anticodons on transfer RNA 2.7: Understand the nature of the genetic code 2.8: Know that a gene is a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain 2.11 (i): Understand the process of DNA replication, including the role of DNA polymerase 2.12 (i): Understand how errors in DNA replication can give rise to mutations 2.12 (ii): Understand how cystic fibrosis results from one of a number of possible gene mutations 2.13 (i): Know the meaning of the terms: gene, allele, genotype, phenotype, recessive, dominant, incomplete dominance, homozygote and heterozygote 2.13 (ii): Understand patterns of inheritance, including the interpretation of genetic pedigree diagrams, in the context of monohybrid inheritance 2.14: Understand how the expression of a gene mutation in people with cystic fibrosis impairs the functioning of the gaseous exchange, digestive and reproductive systems 2.15 (i): Understand the uses of genetic screening, including the identification of carriers, pre-implantation genetic diagnosis (PGD) and prenatal testing, including amniocentesis and chorionic villus sampling 2.15 (ii): Understand the implications of prenatal genetic screening 3.8 (i): The loci is a location of genes on a chromosome 3.8 (ii): The linkage of genes on a chromosome and sex linkage 3.12: Understand how cells become specialised through differential gene expression, producing active mRNA leading to synthesis of proteins, which in turn control cell processes or determine cell structure in animals and plants, including the lac operon 3.14 (i): Phenotype is an interaction between genotype and the environment 3.15: Understand how some phenotypes are affected by multiple alleles for the same gene at many loci (polygenic inheritance) as well as the environment and how this can give rise to phenotypes that show continuous variation 6.4: Know how DNA can be amplified using the polymerase chain reaction (PCR) 6.10: Understand how one gene can give rise to more than one protein through posttranscriptional changes to messenger RNA (mRNA).
Topic 5: Energy transfers in and between organisms (AQA A-level Biology)
GJHeducationGJHeducation

Topic 5: Energy transfers in and between organisms (AQA A-level Biology)

15 Resources
Normally the first topic to be taught in the second year of the AQA A-level Biology course, topic 5 contains some very important biological processes which include photosynthesis, respiration and energy transfer between organisms. All 15 lessons included in this bundle are highly detailed and have been planned at length to ensure that students remain motivated and engaged whilst being constantly challenged on their current understanding. Links to previously-covered topics are also made throughout the lessons. The following specification points are covered in these lessons: TOPIC 5.1 The light-dependent reaction of photosynthesis The use of reduced NADP and ATP from the light-dependent reaction in the light-independent reaction The light-independent reaction of photosynthesis Environmental factors that limit the rate of photosynthesis TOPIC 5.2 Respiration produces ATP Glycolysis as the first stage of aerobic and anaerobic respiration The conversion of pyruvate to lactate or ethanol in the anaerobic pathways The link reaction and the Krebs cycle Synthesis of ATP by oxidative phosphorylation Other respiratory substrates TOPIC 5.3 Gross primary production and net primary production The net production of consumers Farming practices designed to increase the efficiency of energy transfer TOPIC 5.4 The role of microorganisms in the nitrogen cycle If you would like to sample the quality of the lessons in this bundle, then download the chloroplast structure, anaerobic respiration, oxidative phosphorylation and GPP lessons as these have been uploaded for free
Cell structure & biological molecules (OCR A-level Biology A)
GJHeducationGJHeducation

Cell structure & biological molecules (OCR A-level Biology A)

19 Resources
It’s fair to say that cell structure and biological molecules are two of the most important topics in the OCR A-level Biology A course and all 19 lessons that are included in this bundle have been planned at length to cover the module 2.1.1 & 2.1.2 specification points in the detail required at this level. The lesson PowerPoints and their accompanying resources contain a wide range of tasks as well as regular checks to allow students to assess their understanding of the current content as well as prior knowledge checks to emphasise the importance of making links to topics in other modules. The following specification points in modules 2.1.1 (cell structure) and 2.1.2 (biological molecules) are covered by the lessons in this bundle: 2.1.1 The use of microscopy to observe and investigate different types of cell and cell structure in a range of eukaryotic organisms The use of the eyepiece graticule and stage micrometer The use of staining in light microscopy The use and manipulation of the magnification formula The difference between magnification and resolution The ultrastructure of eukaryotic cells and the functions of the different cellular components The interrelationship between the organelles involved in the production and secretion of proteins The importance of the cytoskeleton The similarities and differences between the ultrastructure of prokaryotic and eukaryotic cells 2.1.2 The properties and roles of water in living organisms The concept of monomers and polymers and the importance of condensation and hydrolysis reactions The chemical elements that make up biological molecules The structure and properties of glucose and ribose The synthesis and breakdown of a disaccharide and a polysaccharide by the formation and breakage of glycosidic bonds The structure of starch, glycogen and cellulose molecules The relationship between the structure, function and roles of triglycerides, phospholipids and cholesterol in living organisms The general structure of an amino acid The synthesis and breakdown of dipeptides and polypeptides The levels of protein structure The structure and function of globular proteins The properties and functions of fibrous proteins The key inorganic ions involved in biological processes The chemical tests for proteins, reducing and non-reducing sugars, starch and lipids If you would like to sample the quality of the lessons included in this bundle, then download the following lessons as they have been uploaded for free: The use of microscopy The importance of the cytoskeleton Properties and roles of water Glucose & ribose General structure of an amino acid Dipeptides, polypeptides and protein structure
Topic B3: Organism-level systems (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B3: Organism-level systems (OCR Gateway A GCSE Biology)

13 Resources
This bundle of 15 lessons covers the majority of the content in Topic B3 (Organism level systems) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: The nervous system The eye Hormones and the endocrine system Adrenaline Negative feedback loops Thyroid gland and thyroxine The menstrual cycle Contraception Using hormones to treat infertility Plant hormones Homeostasis Controlling body temperature Controlling blood glucose Diabetes Inside the kidney All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic 3: Voice of the Genome (Edexcel SNAB)
GJHeducationGJHeducation

Topic 3: Voice of the Genome (Edexcel SNAB)

13 Resources
This bundle contains 13 detailed lesson PowerPoints, which together with their accompanying resources, have been planned to include a wide variety of tasks that will engage and motivate the students whilst covering the content of topic 3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The voice of the genome topic content includes key biological concepts such as eukaryotic cells, cell division and genetics and the following specification points are covered by these lessons: All living organisms are made of cells, sharing common features The ultrastructure of eukaryotic cells and the role of the organelles The role of the rER and the Golgi body in protein transport The relationship between the features of the mammalian gametes and their functions The loci is the location of a gene on a chromosome The linkage of genes on a chromosome and sex linkage The role of meiosis in ensuring genetic variation The role of mitosis and the cell cycle The meaning of the terms stem cell, pluripotency and totipotency The decisions about the use of stem cells in medical therapies The specialisation of cells through differential gene expression Understand how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems Phenotype is the interaction between genotype and the environment Epigenetic changes can modify the activation of certain genes Some phenotypes are affected by multiple alleles for the same gene at many loci as well as the environment and this gives rise to continuous variation If you would like to sample the quality of lessons in this bundle, then download the ultrastructure of eukaryotic cells, mitosis and the cell cycle and gene expression lessons as these have been uploaded for free
OCR A-Level Biology A REVISION LESSONS
GJHeducationGJHeducation

OCR A-Level Biology A REVISION LESSONS

20 Resources
Each of the 20 revision lessons included in this bundle has been designed to motivate and engage the students whilst they are challenged on their knowledge of the content of the OCR A-Level Biology A specification. The detailed PowerPoints contain a wide range of activities which include exam questions with explained answers, differentiated tasks and quiz competitions that are supported by the accompanying worksheets. The modules covered in this bundle are: Module 2.1.1: Cell structure Module 2.1.2: Biological molecules Module 2.1.3: Nucleotides and nucleic acids Module 2.1.4: Enzymes Module 2.1.5: Biological membranes Module 2.1.6: Cell division, cell diversity and cellular organisation Module 3.1.2: Transport in animals Module 3.1.3: Transport in plants Module 4.1.1: Communicable diseases, disease prevention and the immune system Module 4.2.1: Biodiversity Module 4.2.2: Classification and evolution Module 5.1.2: Excretion as an example of homeostatic control Module 5.1.3: Neuronal communication Module 5.1.4: Hormonal communication Module 5.1.5: Plant and Animal responses Module 5.2.1: Photosynthesis Module 5.2.2: Respiration Module 6.1.1: Cellular control Module 6.1.2: Pattens of inheritance Module 6.1.3: Manipulating genomes Helpful hints are provided throughout the lessons to help the students with exam technique and in structuring their answers. These lessons are suitable for use throughout the course and can be used for revision purposes at the end of a module or in the lead up to mocks or the actual A LEVEL exams
Topic 1: Biological molecules (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 1: Biological molecules (Edexcel A-level Biology B)

18 Resources
The biological molecules topic is incredibly important, not just because it is found at the start of the course, but also because of its detailed content which must be well understood to promote success with the other 9 Edexcel A-level Biology B topics. Many hours of intricate planning has gone into the design of all of the 18 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions. The following specification points are covered by the lessons within this bundle: The differences between monosaccharides, disaccharides and polysaccharides The structure of glucose and ribose The formation of disaccharides and polysaccharides from monosaccharides The structure of starch, glycogen and cellulose The synthesis of a triglyceride The differences between saturated and unsaturated lipids The relationship between the structure of lipids and their roles The structure and properties of phospholipids The structure of an amino acid The formation of polypeptides and proteins The role of ionic, hydrogen and disulphide bonding in proteins The levels of protein structure The structure of collagen and haemoglobin The structure of DNA The semi-conservative replication of DNA A gene is a sequence of bases on DNA that codes for an amino acid sequence The structure of mRNA The structure of tRNA The process of transcription The process of translation Base deletions, insertions and substitutions as gene mutations The effect of point mutations on amino acid sequences The structure of enzymes as globular proteins The concept of specificity and the induced-fit hypothesis Enzymes are catalysts that reduce activation energy Understand how temperature affects enzyme activity Enzymes catalyse a wide range of intracellular reactions as well as extracellular ones The importance of water for living organisms Due to the detail included in these lessons, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to complete. If you would like to see the quality of the lessons then download the monosaccharides, disaccharides and polysaccharides, glucose and ribose, triglycerides, structure of DNA and transcription lessons as these have been uploaded for free.
Topic B5: Health, disease and development of medicines (Edexcel GCSE Biology)
GJHeducationGJHeducation

Topic B5: Health, disease and development of medicines (Edexcel GCSE Biology)

10 Resources
This bundle of 10 lessons covers a lot of the content in Topic B5 (Health, disease and development of medicines) of the Edexcel GCSE Biology specification. The topics covered within these lessons include: Health The difference between communicable and non-communicable diseases Pathogens Common infections The spread of diseases and the prevention The spread of STIs Plant defences Identification of plant diseases The physical and chemical defences of the human body The use of antibiotics Developing new medicines Monoclonal antibodies Non-communicable diseases Treating cardiovascular disease All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Enzymes, biological membranes & cell division (OCR A-level Biology A)
GJHeducationGJHeducation

Enzymes, biological membranes & cell division (OCR A-level Biology A)

13 Resources
This lesson bundle has been formed from the 13 detailed lesson PowerPoints and their accompanying resources that have been uploaded to cover a lot of the content in modules 2.1.4, 2.1.5 and 2.1.6 of the OCR A-level Biology A specification. Each lesson contains a wide range of tasks, which include exam-style questions (with mark schemes), guided discussion points, and quick quiz competitions, that will engage and motivate the students whilst covering the following specification points: Module 2.1.4: Enzymes The role of enzymes in catalysing reactions that affect metabolism at a cellular and whole organism level The role of enzymes in catalysing both intracellular and extracellular reactions The mechanism of enzyme action The effect of pH on enzyme activity The effect of temperature on enzyme activity The calculation of the temperature coefficient The effect of enzyme and substrate concentration on enzyme activity The need for coenzymes, cofactors and prosthetic groups in some enzyme-controlled reactions Module 2.1.5: Biological membranes The fluid mosaic model of membrane structure and the roles of its components Simple and facilitated diffusion as forms of passive transport Active transport, endocytosis and exocytosis as processes requiring ATP as an immediate source of energy The movement of water across membranes by osmosis and the effects that solutions of different water potential can have on plant and animal cells Module 2.1.6: Cell division, cell diversity and cellular organisation The cell cycle How the cell cycle is regulated The main stages of mitosis The significance of mitosis in life cycles The significance of meiosis in life cycles The main stages of meiosis How cells of multicellular organisms are specialised for particular functions The organisation of cells into tissues, organs and organ systems The production of erythrocytes and neutrophils from stem cells in bone marrow If you would like to sample the quality of the lessons in this bundle, then download the following lessons as they have been uploaded for free: The roles of enzymes and mechanism of action Simple and facilitated diffusion Cell specialisation and organisation
Topic B1:  Cell Level Systems (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic B1: Cell Level Systems (OCR Gateway A GCSE Combined Science)

8 Resources
This bundle of 9 lessons covers the majority of the content in Topic B1 of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Animal and plant cells Prokaryotic cells Light and electron microscopy DNA Enzymes Enzyme activity Aerobic respiration Anaerobic respiration Photosynthesis All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding. It is estimated that this bundle would cover about 6 week’s worth of lessons.
Topics 1 & 2: Cell structure & Biological molecules (CIE A-level Biology)
GJHeducationGJHeducation

Topics 1 & 2: Cell structure & Biological molecules (CIE A-level Biology)

18 Resources
It’s no coincidence that cell structure and biological molecules find themselves as topics 1 and 2 of the CIE A-level Biology course, because a clear understanding of their content is absolutely critical to promote success with the 17 topics that follow. Hours and hours of intricate planning has gone into the 18 lessons included in this bundle to ensure that the detailed content is relevant and can be understood and that links are made to related sections of topics 3 - 19. The lesson PowerPoints and accompanying resources contain a wide range of activities that include: differentiated exam-style questions with clear mark schemes directed discussion points quiz competitions to introduce key terms and values current understanding and prior knowledge checks Due to the detail included in these lessons, it is estimated that it will take in excess of 2 months of allocated teaching time to cover the content of the resources A number of the resources have been shared for free so these can be downloaded in order to sample the quality of the lessons
Module 5.2: Photosynthesis & Respiration (OCR A-level Biology A)
GJHeducationGJHeducation

Module 5.2: Photosynthesis & Respiration (OCR A-level Biology A)

14 Resources
Photosynthesis and respiration are two of the most commonly-assessed topics in the terminal A-level exams but are often poorly understood by students. These 14 lessons have been intricately planned to contain a wide range of activities that will engage and motivate the students whilst covering the key detail to try to deepen their understanding and includes exam-style questions so they are prepared for these assessments. The following specification points in modules 5.2.1 and 5.2.2 of the OCR A-level Biology A course are covered by these lessons: The structure of a chloroplast and the sites of the two main stages of photosynthesis The light-dependent stage of photosynthesis The fixation of carbon dioxide and the light-independent stage of photosynthesis The uses of triose phosphate Factors affecting photosynthesis The need for cellular respiration The structure of the mitochondrion The process and site of glycolysis The link reaction and its site in the cell The process and site of the Krebs cycle The importance of coenzymes in cellular respiration The process and site of oxidative phosphorylation The chemiosmostic theory The process of anaerobic respiration in eukaryotes The relative energy values of carbohydrates, lipids and proteins as respiratory substrates The use of the respiratory quotient Due to the detail of these lessons, it is estimated that it will take in excess of 2 months of A-level lessons to cover this module If you would like to sample the quality of the lessons, download the uses of triose phosphate, link reaction and respiratory substrates lessons as these have been shared for free
Topic 8: The control of gene expression (AQA A-level Biology)
GJHeducationGJHeducation

Topic 8: The control of gene expression (AQA A-level Biology)

12 Resources
Each of the 12 lessons included in this bundle have been written to specifically cover the content as detailed in topic 8 of the AQA A-level Biology specification (The control of gene expression). The wide range of activities will maintain engagement whilst supporting the explanations of the biological knowledge to allow the students to build a deep understanding of this potentially difficult topic! Lessons which cover the following specification points are included in this bundle: Gene mutations and their effect on the structure of proteins Most of a cell’s DNA is not translated Totipotent, pluripotent, multipotent and unipotent stem cells Regulation of transcription by transcription factors The role of oestrogen in initiating transcription Epigenetic control of gene expression in eukaryotes Inhibition of transcription by increased DNA methylation or decreased acetylation of histones Translation of mRNA can be inhibited by RNA interference The main characteristics of benign and malignant tumours Determining the genome of simpler organisms to determine the proteome and its applications The development of DNA sequencing methods The production of DNA fragments through use of enzymes or a gene machine The role of the PCR to amplify DNA fragments The transfer of DNA into a host cell The use of labelled DNA probes to screen patients for heritable conditions, drug responses and to identify health risks VNTRs The technique of genetic fingerprinting to analyse DNA fragments If you would like to see the quality of the lessons, download the producing DNA fragments and DNA methylation and acetylation lessons as these have been uploaded for free