A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This fully-resourced lesson looks at the structures of the sensory, relay and motor neurones and explains how the presence of a myelin sheath increases the speed of conduction of an impulse. The engaging PowerPoint and accompanying resources have been designed to cover point 8.1 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to apply their understanding of the structures and functions of sensory, relay and motor neurones as well as the differences between myelinated and unmyelinated neurones. This lesson also covers 8.2 (i) as the students will be able to see how conduction along a motor neurone stimulates effectors to respond to a stimulus. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way.
The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to look at the importance of the myelin sheath for the sensory and motor neurones. Students will be introduced to the need for the entry of ions to cause depolarisation and will learn that this is only possible at the nodes of Ranvier when there is a myelin sheath. Key terminology such as saltatory conduction is introduced and explained. The final task involves a comparison between the three neurones to check that the students have understood the structures and functions of the neurones.
Throughout the lesson, links are made to related topics such the organisation of the nervous system and students will be given additional knowledge such as the differences between somatic and autonomic motor neurones.
This fully-resourced lesson describes the beneficial, neutral and harmful effects of gene mutations on the primary structure of a polypeptide. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 6.1.1 (a) of the OCR A-level Biology A specification which states that students should be able to understand how substitutions, deletions and insertions change the base sequence and describe how this affects protein production and function.
In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was covered in module 2.1.3. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a task called known as THE WALL is used to introduce to the names of three types of gene mutation whilst challenging the students to recognise terms which are associated with the genetic code and were met back in 2.1.3. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution
This engaging and detailed lesson looks at the roles of the Link reaction and the Krebs cycle as the stages of aerobic respiration which occur in the mitochondrial matrix. Both the PowerPoint and the accompanying resource have been designed to cover point 7.5 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification.
The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that these two stages occur in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the Link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. The rest of the lesson focuses on the Krebs cycle. In line with the detail of the specification, students will understand how decarboxylation and dehydrogenation reactions result in the regeneration of the 4C compound.
It is estimated that it will take about 2 hours of A-level teaching time to cover the detail of the lesson and therefore the detail of the specification point 7.5
This lesson describes the organisation of the mammalian nervous system, focusing on the CNS and the numerous divisions and subdivisions of the PNS. The PowerPoint and accompanying resource have been planned to cover the content of points 9.4 (i) and (iv) of the Edexcel A-level biology B specification.
The lesson begins by challenging the students to recognise 6 organ systems from their descriptions, with the final description relating to the nervous system. A prior knowledge check of the classification topic introduces the lesson topic as the structure of the mammalian nervous system and then the lesson moves through the different divisions, completing the diagram in the cover image as each one is explored. The brain, spinal cord, neurones and autonomic nervous system are described in depth in upcoming lessons, so this lesson has been designed to introduce key information and to challenge students to build on the details they have from GCSE studies!
This lesson describes the general structure of the 20 amino acids found in proteins and makes clear links to related topics such as genes. The PowerPoint has been designed to cover specification point 2.1.2 (k) of the OCR A-level Biology A course and provides a clear introduction to the following lesson on the formation of dipeptides and polypeptides.
The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference. Students will be introduced to the existence of hydrophobic, hydrophilic, acidic and basic R groups so that they are able to apply this knowledge in future lessons where structure and shape is considered. Some time is also given to look at cysteine in greater detail due to the presence of sulfur atoms and once again a link is made to disulfide bridges for upcoming lessons. The lesson concludes with one more quiz round called LINK TO THE FUTURE where the students will see the roles played by amino acids in the later part of the course such as translation and in the formation of dipeptides.
This fully-resourced lesson describes the relationship between the structure and properties of triglycerides and considers their roles in living organisms. The engaging PowerPoint and accompanying worksheets have been designed to cover the first part of point 1.3 of the AQA A-level Biology specification and links are also made to related future topics such as the importance of the myelin sheath for the conduction of an electrical impulse.
The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from topic 1.2 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of a triglyceride mean that it has numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
This lesson focuses on the main areas of the spinal cord but also introduces key nervous system structures to prepare students for upcoming topic 8 lessons. The PowerPoint and accompanying resource have been planned to cover the content of points (b & c) of topic 8 of A2 unit 3 of the WJEC A-level biology specification.
The lesson begins with a challenge, where students must use their knowledge of content from earlier topics to reveal 5 numbers that add up to 33. They will learn that this is the normal number of vertebrae in the human vertebral column and this leads into the recognition that these bones act to surround and protect the spinal cord. The meninges are introduced and then a quick quiz round is used to reveal the term, grey matter. Students will see that this is found in the centre of the spinal cord and is surrounded by an outer region of white matter. The idea of myelination is introduced, and initial details provided about the increased conductance speed in myelinated neurones because of saltatory conduction. Moving forwards, students will meet the terms dorsal and ventral and see on a diagram that nerves enter and leave the cord by these roots. The role of cerebrospinal fluid is explored and a series of exam-style questions are used to challenge their knowledge from topic 4 as well as their mathematical skills. The answers are embedded into the PowerPoint to allow the students to assess their progress.
The lesson finishes with the introduction of the cauda equina as the bundle of nerves at the distal end of the spinal cord.
This lesson describes the roles of the hypothalamus, posterior pituitary, ADH and collecting ducts in osmoregulation. The PowerPoint and accompanying resources have been planned to cover the content of point (8) of topic 14.1 of CIE A-level biology specification (for assessment in 2025-27).
Students covered the principles of homeostasis and negative feedback in the first lesson in this topic, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics.
The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work.
This lesson describes the stages of succession from colonisation to the formation of a climax community. The PowerPoint and accompanying worksheets have been designed to cover the content of point 5.15 of the Edexcel International A-level Biology specification.
This lesson uses a step-by-step method to guide the students through each stage of the process of succession, explaining each of the gradual, progressive changes that occur in a community over time. At each stage, time is taken to consider the organisms involved. There is a focus on lichens as examples of pioneer species and students will understand how colonisation by these organisms is critical to provide organic matter and to turn the bare ground into soil so it is habitable by other species. The island of Surtsey in Iceland is used as a real-world example and shows how different parts of an area can be at different stages of succession.
Understanding and prior knowledge checks are embedded into the PowerPoint (along with the answers) to allow students to assess their progress against the current topic and to encourage them to make links to previously-covered work.
This fully-resourced lesson describes the differences between bacteriostatic and bactericidal antibiotics. The engaging PowerPoint and accompanying resources have been designed to cover point 6.13 of the Edexcel International A-level Biology specification but also makes continual links to earlier lessons in topic 6 as well as related topics from the previous year such as protein synthesis from topic 2
The lesson begins by challenging the students to use their knowledge of the previous topic 6 lessons to identify the suffixes cidal and static. Students will learn that when the prefix is added, these form the full names of two types of antibiotics. Their understanding of terminology is tested further as they have to recognise that Polymyxin B is an example of a bactericidal antibiotic as its actions would result in the death of the bacterial cell. Tetracycline is used as the example of a bacteriostatic antibiotic and students will discover that its prevention of the binding of tRNA that inhibits protein synthesis and this reduction and stopping of growth and reproduction is synonymous with these drugs. Students are challenged on their knowledge of translation and will also be given time for a class discussion to understand that these antibiotics encourage the body’s immune system to overcome the pathogen in natural, active immunity.
The final part of the lesson uses a quick quiz competition and a series of exam-style questions to ensure that students can recognise the different antibiotics from descriptions.
This lesson describes how the movement of growth factors regulates growth in response to directional stimuli, focusing on gravitropism and phototropism. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 3, which have been designed to cover point 6.1.1 (Survival and response) of the AQA A-level biology specification.
The lesson begins with a prior knowledge check, where the students have to identify key terms encountered in topics 1 - 4, and use their 1st letters to form the term, stimuli. Students are reminded of the meaning of a stimulus, and this introduces the need for organisms to detect and respond to stimuli, to increase their chances of survival. This lesson focuses on these responses in flowering plants, and builds on any knowledge they may have gained at GCSE. They should have met auxins at this previous level, but will now be introduced to IAA, and will complete several tasks which check that they understand the key features of these chemicals, such as their location of production and method by which they move through the shoots and roots. The students are guided through the movement of IAA to the shaded side in a shoot during phototropism, and will learn how this uneven distribution leads to uneven growth. An exam-style question presents them with two further scenarios, where the tip of the shoot has been cut off or is covered, and the students need to describe and explain what will happen to the appearance of the shoot after a week. Moving forwards, the students will learn how the pumping of hydrogen ions into the cell wall and the activation of expansin proteins are involved in the cell elongation.
The remainder of the lesson discusses the response to gravity and explains how shoots and roots respond differently.
The lesson is full of understanding and prior knowledge checks and all answers are embedded into the PowerPoint.
The other two lessons in this series of 3 covering 6.1.1 describe taxes and kineses and the protective effect of a simple reflex.
This revision lesson uses a 15 question multiple-choice assessment to challenge the students on their knowledge of the content of module 5.1.2. In addition to the assessment, this lesson includes a PowerPoint where the answers are revealed, a series of key points linked to the OCR A-level biology A specification, and additional questions to challenge knowledge not directly covered by the 15 multiple-choice questions.
The topics challenged by the assessment are:
The meaning of the term excretion (as opposed to egestion)
The structure of the liver
The formation of urea by the ornithine cycle
The regions of the kidney
Ultrafiltration in the glomerulus
The structure and function of the PCT
The countercurrent multiplier mechanism in the loop of Henle
Osmoregulation
Homeostasis
The use of renal dialysis
Monoclonal antibodies in diagnostic tests
This lesson describes the relationship between the structure and function of the polysaccharides, starch and cellulose. The detailed PowerPoint and accompanying resource have been designed to cover point 4.3 of the Edexcel International A-level Biology specification and includes a focus on the role of the hydrogen bonds between the beta-glucose molecules in the formation of cellulose microfibrils.
The structure of amylose and amylopectin was described during a lesson in topic 1, so the start of this lesson challenges the students on their recall of these details. They have to complete a comparison table for these two polysaccharides by identifying the monomer and type of glycosidic bonds that are found in each of the structures. Time is taken to explain how the greater resistance to digestion of amylose means that this carbohydrate is important for plant energy storage whereas the multiple chain ends in the branched amylopectin means that this polysaccharide can be hydrolysed quickly when energy is needed. The rest of the lesson describes the structure of cellulose and focuses on the link between the structure and the need for this polysaccharide to support the plant cell as well as the whole plant. Students will see how every other beta glucose monomer is rotated by 180 degrees and will learn that hydrogen bonds form between these molecules on the same chain as well as between adjacent chains in a cellulose microfibril.
The lesson concludes with a quick quiz competition where the students have to compete to open a safe using a combination made up of key values associated with glycogen, starch and cellulose.
This revision resource has been designed to include a range of activities that will engage the students whilst they assess their understanding of the content of topic B8 (Gas exchange and respiration) of the CIE IGCSE Combined Science specification for examination in June and November 2020 and 2021. Exam questions, quick tasks and quiz competitions such as “The BIG REVEAL” will challenge the students on their recall of the content as well as their ability to apply this knowledge.
The lesson was written to cover as much of the content as possible, but the following topics have received particular attention:
The role of cilia, goblet cells and mucus in the trachea and bronchi
The effects of the chemicals in tobacco smoke on gas exchange
Efficient gas exchange at the alveoli
The composition of inhaled and exhaled air
Aerobic respiration as the chemical reaction that releases energy
The uses of energy in the human body
This resource contains an engaging PowerPoint (54 slides) and associated worksheets and is ideal for use at the end of this topic or in the lead up to mocks or the actual terminal exams
This lesson describes the relationship between the structure and function of the giant covalent substances, graphite and diamond. The PowerPoint and accompanying resource have been designed to cover points 1.35, 1.36 and 1.37 of the Edexcel GCSE Chemistry specification also covers those same points in the Chemistry section of the Combined Science course
As shown in the picture, the lesson begins with a newspaper story about two prisoners who escaped from Pentonville prison by using a diamond-tipped drill and this immediately introduces the use of this allotrope of carbon in cutting tools. There is a clear focus on the link between the structure, bonding and respective uses. Time is taken to focus on the comparison between graphite and diamond in terms of their ability to conduct electricity. A step by step answer is used to explain why diamond cannot conduct electricity so that students can use this when forming their answer for graphite.
This lesson describes the mass flow hypothesis for the mechanism of translocation in plants and includes details of active loading at the source. Both the detailed PowerPoint and accompanying resources have been designed to cover the 4th part of point 3.4.2 of the AQA A-level Biology specification.
The lesson begins by challenging the students to recognise the key term translocation when it is partially revealed and then the rest of the lesson focuses on getting them to understand how this mechanism involves the mass flow of assimilates down the hydrostatic pressure gradient from the source to the sink. It has been written to tie in with an earlier lesson in topic 3.4.2 where the structure of the phloem tissue was initially introduced and the students are continually challenged on this prior knowledge. A step-by-step guide is used to describe how sucrose is loaded into the phloem at the source by the companion cells. Time is taken to discuss key details such as the proton pumping to create the proton gradient and the subsequent movement back into the cells by facilitated diffusion using co-transporter proteins. Students will learn that the hydrostatic pressure at the source is high, due to the presence of the water and sucrose as cell sap, and that this difference when compared to the lower pressure at the sink leads to the movement along the phloem.
A number of quick quiz rounds are included in the lesson to maintain engagement and to introduce key terms and the lesson concludes with a game of SOURCE or SINK as students have to identify whether a particular plant structure is one or the other (or both)
This fully-resourced lesson describes the processes of active transport, endocytosis and exocytosis and explains the need for ATP. The PowerPoint and accompanying worksheets have been designed to cover the second part of point 4.2 (a) of the CIE International A-level Biology specification. The first part of 4.2 (a), concerning simple and facilitated diffusion, was covered in the previous lesson.
The start of the lesson challenges the students to use their prior knowledge of biological molecules to come up with the abbreviation ATP and they will learn that this is a phosphorylated nucleotide that contains adenine, ribose and three phosphate groups. Students may not have known this as the energy currency from GCSE so time is taken to explain that this molecule must be broken down to release energy and students are challenged to recall which type of reaction will be involved and to predict the products of such a reaction. This hydrolysis of ATP can be coupled to energy-requiring reactions within the cell and the rest of the lesson focuses on the use of this energy for active transport, endocytosis and exocytosis. Students are challenged to answer a series of questions which compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The lesson concludes with a link to a future topic as the students are shown how exocytosis is involved in a synapse.
This lesson introduces monomers, polymers, condensation and hydrolysis reactions and chemical bonds to prepare students for the rest of topic 1 (biological molecules). The PowerPoint and accompanying worksheet cover point 1.1 of the AQA A-level Biology course, and as this is likely to be the very first lesson that the students encounter, the range of engaging tasks have been specifically designed to increase the likelihood of the key points and fundamentals being retained.
Monomers were previously met at GCSE and so the beginning of the lesson focuses on the recall of the meaning of this key term before the first in a series of quiz rounds is used to introduce nucleotides, amino acids and monosaccharides as a few of the examples that will be met in this topic. Dipeptides and disaccharides are introduced as structures containing 2 amino acids or sugars respectively and this is used to initiate a discussion about how monomers need to be linked together even more times to make the larger chains known as polymers. At this point in the lesson, the students are given the definition of a condensation reaction and then challenged to identify where the molecule of water is eliminated from when two molecules of glucose join. A series of important prefixes and suffixes are then provided and students use these to predict the name of the reaction which has the opposite effect to a condensation reaction - a hydrolysis reaction.
Links to upcoming lessons are made throughout the PowerPoint to encourage students to begin to recognise the importance of making connections between topics.
This detailed lesson describes how oxygen is transported by haemoglobin and explains the changes in saturation in the oxyhaemoglobin dissociation curve. The informative PowerPoint has been designed to cover the 1st part of the transportation of oxygen section in the applied anatomy and physiology unit of the AQA A-level PE specification.
The lesson begins by using a quiz round from the game show POINTLESS to engage students and to introduce haemotology as the study of diseases related to blood. This includes haemoglobin and students will be reminded that this is the protein that is found in the red blood cells of humans. They will learn that it is a protein consisting of four polypeptide chains with a haem group on each chain and that it is this haem molecule which has a high affinity for oxygen to enable oxyhaemoglobin to be formed. Key terminology such as affinity are continually used to deepen understanding of this topic and to make links to those covered in upcoming lessons such as the Bohr shift. Moving forwards, students will plot an oxyhaemoglobin dissociation curve. The understanding of the changes in saturation can be poorly understood so a step-by-step method with simple questions to discuss is used to ensure that the fundamentals are embedded. Ultimately, students will understand that haemoglobin becomes fully saturated at the high partial pressures of oxygen at the alveoli at the lungs, before transporting it to the cells of the working muscles where it dissociates to release the oxygen at the lower partial pressures there.