Hero image

GJHeducation's Shop

Average Rating4.50
(based on 910 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1164k+Views

1972k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Semi-conservative replication of DNA (CIE International A-level Biology)
GJHeducationGJHeducation

Semi-conservative replication of DNA (CIE International A-level Biology)

(1)
This fully-resourced lesson describes how DNA is replicated during interphase and explains why it is semi-conservative replication. Both the detailed PowerPoint and accompanying resources have been designed to cover the details of point 6.1 © of the CIE International A-level Biology specification The main focus of this lesson is the roles of DNA helicase in breaking the hydrogen bonds between nucleotide bases and DNA polymerase incorporating the phosphorylated nucleotides into the sequence. Students are also introduced to DNA ligase to enable them to understand how this enzyme functions to join the nucleic acid fragments. Time is taken to explain key details such as the assembly of strands in the 5’-to-3’ direction so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure, phosphorylated nucleotides and hydrolysis reactions through a range of exam questions and answers are displayed so any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
Spearman's rank correlation (CIE A-level Biology)
GJHeducationGJHeducation

Spearman's rank correlation (CIE A-level Biology)

(1)
This lesson describes how to use the Spearman’s rank correlation to analyse the relationships between the distribution of species and abiotic and biotic factors. The PowerPoint and accompanying exam-style question are the first lesson in a series of 2 which have been designed to cover point 18.1 (e) of the CIE A-level Biology specification and challenges the students on their knowledge of the t-test as covered in topic 17 as well as preparing students for the next lesson on the use of the Pearson’s linear correlation formula. As with the lessons on the t-test and Simpson’s index of diversity, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question which assesses whether there is a relationship between light intensity and % plant cover in a habitat. The mark scheme is displayed on the PowerPoint so the students can assess their understanding and address any misconceptions that may arise
Biuret test & 1.4.1 REVISION (AQA A-level Biology)
GJHeducationGJHeducation

Biuret test & 1.4.1 REVISION (AQA A-level Biology)

(1)
This lesson describes the biuret test for proteins and then uses a range of activities to challenge the students on their knowledge of topic 1.4.1. The engaging PowerPoint and accompanying resources are part of the last lesson in a series of 3 lessons which have been designed to cover the content detailed in topic 1.4.1 (General properties of proteins) of the AQA A-level Biology specification. The first section of the lesson describes the steps in the biuret test and challenges the students on their recall of the reducing sugars and starch tests from topic 1.2 to recognise that this is a qualitative test that begins with the sample being in solution. The students will learn that the addition of sodium hydroxide and then copper sulphate will result in a colour change from light blue to lilac if a protein is present. The remainder of the lesson uses exam-style questions with displayed mark schemes, understanding checks and quick quiz competitions to engage and motivate the students whilst they assess their understanding of this topic. The following concepts are tested during this lesson: The general structure of an amino acid The formation of dipeptides and polypeptides through condensation reactions The primary, secondary, tertiary and quaternary structure of a protein Biological examples of proteins and their specific actions (e.g. antibodies, enzymes, peptide hormones)
Active transport (CIE International A-level Biology)
GJHeducationGJHeducation

Active transport (CIE International A-level Biology)

(1)
This fully-resourced lesson describes the processes of active transport, endocytosis and exocytosis and explains the need for ATP. The PowerPoint and accompanying worksheets have been designed to cover the second part of point 4.2 (a) of the CIE International A-level Biology specification. The first part of 4.2 (a), concerning simple and facilitated diffusion, was covered in the previous lesson. The start of the lesson challenges the students to use their prior knowledge of biological molecules to come up with the abbreviation ATP and they will learn that this is a phosphorylated nucleotide that contains adenine, ribose and three phosphate groups. Students may not have known this as the energy currency from GCSE so time is taken to explain that this molecule must be broken down to release energy and students are challenged to recall which type of reaction will be involved and to predict the products of such a reaction. This hydrolysis of ATP can be coupled to energy-requiring reactions within the cell and the rest of the lesson focuses on the use of this energy for active transport, endocytosis and exocytosis. Students are challenged to answer a series of questions which compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The lesson concludes with a link to a future topic as the students are shown how exocytosis is involved in a synapse.
Continuous & discontinuous variation (CIE A-level Biology)
GJHeducationGJHeducation

Continuous & discontinuous variation (CIE A-level Biology)

(1)
This fully-resourced lesson describes the differences between continuous and discontinuous variation. The engaging PowerPoint and accompanying resources have been designed to cover point 17.1 (a) of the CIE A-level Biology specification but also acts as a revision of topic 16 as it challenges students on their knowledge of gene mutations and meiosis. The students begin the lesson by having to identify phenotype and species from their respective definitions so that a discussion can be encouraged where they will recognise that phenotypic variation within a species is due to both genetic and environmental factors. The main part of the the lesson focuses on these genetic factors, and describes how mutation and the events of meiosis contribute to this variation. A range of activities, which include exam-style questions and quick quiz rounds, are used to challenge the students on their knowledge and understanding of substitution mutations, deletions, insertions, the genetic code, crossing over and independent assortment. Moving forwards, the concept of multiple alleles is introduced and students will learn how the presence of more than 2 alleles at a locus increases the number of phenotypic variants. Another quick quiz round is used to introduce polygenic inheritance and the link is made between this inheritance of genes at a number of loci as an example of continuous variation. In line with the title of the lesson, the next task challenges them to recognise descriptions and examples which apply to the different types of variations. The final part of the lesson introduces a few examples where environmental factors affect phenotype, such as chlorosis in plants, so that students are prepared for the following lesson.
Properties and roles of water (OCR A-level Biology)
GJHeducationGJHeducation

Properties and roles of water (OCR A-level Biology)

(1)
This detailed lesson describes the relationship between the structure, properties and roles of water for living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point 2.1.2 (a) of the OCR A-level Biology A course and has been specifically designed to ensure that each role is illustrated using an example in prokaryotes or eukaryotes. As this is the first lesson in the biological molecules sub-module (2.1.2), which is a topic that students tend to find difficult or potentially less engaging, the planning has centred around the inclusion of a wide variety of tasks to cover the content whilst maintaining motivation and engagement. These tasks include current understanding and prior knowledge checks, discussion points and quick quiz competitions to introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples: As a solvent to act as a transport medium in blood plasma Molecules are attracted by cohesive forces to enable transport in the xylem High latent heat of vaporisation for thermoregulation High specific heat capacity for the maintenance of a stable environment Peak density in the liquid form allowing ice to float The final part of the lesson introduces condensation and hydrolysis reactions and students will learn that a clear understanding of these reactions is fundamental as they will reappear throughout the module in the synthesis and breakdown of biological molecules.
Ventilation and gas exchange in insects (OCR A-level Biology)
GJHeducationGJHeducation

Ventilation and gas exchange in insects (OCR A-level Biology)

(1)
This lesson describes the mechanisms of ventilation and gas exchange in insects. The PowerPoint and accompanying worksheets are the part of the second lesson in a series of 2 lessons which have been designed to cover the details that are set out in point 3.1.1 (f) of the OCR A-level Biology A specification. The first lesson in this series describes ventilation and gas exchange in bony fish In the previous lesson, the students were introduced to the different circulatory systems of mammals and bony fish and this knowledge is checked upon at the start of this lesson. This is relevant because the open circulatory system of an insect explains how oxygen is not transported in the blood but instead is absorbed from the body fluid that bathes the tissues. The next part of the lesson describes the structure of the spiracles, tracheae and tracheoles in the tracheal system and explains how this system is responsible for the delivery of oxygen to the open end of the tracheole for gas exchange with this fluid. As the tracheae are supported by chitin, which is similar in structure and function to cellulose and keratin respectively, a series of exam-style questions are used to challenge the students on their knowledge of those polymers from module 2.1.2 (biological molecules). As always, the mark scheme is embedded in the powerpoint so students can assess their understanding and progress. The final part of the lesson describes how squeezing of the tracheoles by the flight muscles and the changes in the volume of the thorax as a result of the movement of the wings are similar to mechanisms observed in mammals.
Nucleotides (OCR A-level Biology)
GJHeducationGJHeducation

Nucleotides (OCR A-level Biology)

(1)
This detailed lesson describes the structure of a nucleotide and a phosphorylated nucleotide and explains how polynucleotides are synthesised and broken down. The engaging PowerPoint has been designed to cover points [a], [b] and [c] of module 2.1.3 as detailed in the OCR A-level Biology A specification and links are made throughout to earlier topics such as biological molecules. Students were introduced to the term monomer and nucleotide in the previous module, so the start of the lesson challenges them to recognise this latter term when only the letters U, C and T are shown. This has been designed to initiate conversations about why only these letters were used so that the nitrogenous bases can be discussed later in greater detail. Moving forwards, students will learn that a nucleotide is the monomer to a polynucleotide and that deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are two examples of this type of polymer. The main part of the lesson has been filled with various tasks that explore the structural similarities and structural differences between DNA and RNA. This begins by describing the structure of a nucleotide as a phosphate group, a pentose sugar and a nitrogenous base. Time is taken to consider the details of each of these three components which includes the role of the phosphate group in the formation of a phosphodiester bond between adjacent nucleotides on the strand. At this point students are challenged on their understanding of condensation reactions and have to identify how the hydroxyl group associated with carbon 3 is involved along with the hydroxyl group of the phosphoric acid molecule. A number of quiz rounds are used during this lesson, as a way to introduce key terms in a fun and memorable way. One of these rounds introduces adenine and guanine as the purine bases and thymine, cytosine and uracil as the pyrimidine bases and the students are shown that their differing ring structures can be used to distinguish between them. The remainder of the lesson focuses on ADP and ATP as phosphorylated nucleotides and links are made to the hydrolysis of this molecule for energy driven reactions in cells such as active transport
Electricity and circuits REVISION (Edexcel GCSE Physics)
GJHeducationGJHeducation

Electricity and circuits REVISION (Edexcel GCSE Physics)

(1)
This is a fully-resourced revision lesson which covers the content detailed in topic 10 (electricity and circuits) of the Pearson Edexcel GCSE Physics specification. The engaging PowerPoint and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quiz competitions to allow students to assess their understanding and ultimately recognise those areas which need further consideration. The following specification points have been given particular attention in this lesson: The electrical symbols that represent the electrical components Describe the differences between series and parallel circuits Recall that a voltmeter is connected in parallel One volt is equal to one joule per coulomb Recall and use the equations that calculate energy transferred, charge, potential difference, power and electrical power Recall that an ammeter is connected in series Calculate the currents, potential differences and resistances in series and parallel circuits Explain how current varies with potential difference in resistors Know the functions of the wires in a plug and the safety features This lesson has been designed to fall in line with the heavy mathematical content of the Physics specification with a number of calculation tasks and students are guided through the range of skills that they will have to employ
The roles of enzymes & mechanism of action (OCR A-level Biology)
GJHeducationGJHeducation

The roles of enzymes & mechanism of action (OCR A-level Biology)

(1)
This fully-resourced lesson describes the roles of enzymes in catalysing both intracellular and extracellular reactions and the mechanism of enzyme action. The engaging PowerPoint and accompanying resources have been designed to cover points 2.1.4 (a, b & c) of the OCR A-level Biology A specification and includes descriptions of Fischer’s lock and key hypothesis and Koshland’s induced-fit model as well as a focus on catalase and the digestive enzymes as intracellular and extracellular enzymes respectively. The lesson has been specifically planned to tie in with module 2.1.2 where protein structure and globular proteins were covered. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The final part of the lesson focuses on intracellular and extracellular enzymes. The students are challenged on their recall of the roles of DNA helicase and polymerase in DNA replication before they are challenged on their ability to apply their knowledge and understanding to an unfamiliar situation with questions about catalase and its role in the decomposition of hydrogen peroxide. The lesson concludes with one further set of exam-style questions that challenge their knowledge of carbohydrates, lipids and proteins from module 2.1.3 as they have to recognise some extracellular digestive enzymes from descriptions of their substrates.
PAPER 5 FOUNDATION TIER REVISION (AQA GCSE Combined Science)
GJHeducationGJHeducation

PAPER 5 FOUNDATION TIER REVISION (AQA GCSE Combined Science)

(1)
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics P1 - P4, that will assessed on PAPER 5. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to cover as many specification points as possible but the following sub-topics have received particular attention: The size of an atom The differences between isotopes Using the half-life in calculations The 13 recall and apply equations in topics P1 - P4 Electrical circuit symbols Measuring current using an ammeter Current and potential difference in series and parallel circuits Changes in resistance in resistors Mains domestic supply Kinetic, internal and potential energy in a system Calculating specific heat capacity and latent heat Physical and chemical changes Conservation of energy Calculating gravitational potential and kinetic energy Penetrating abilities of the different types of radiation In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as circuit calculations and rearranging formulae and converting between units. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 or 4 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 5 exam.
Redox reactions
GJHeducationGJHeducation

Redox reactions

(1)
A short lesson which includes a lesson presentation (27 slides) and a hint worksheet and looks at redox reactions that involve oxygen and electrons. When focussing on oxygen, the lesson uses the example of extracting metals by reacting them with carbon to show how the metal is reduced and the carbon is oxidised. Key terminology such as reducing agents are also discussed. The important topic of electrolysis is used when teaching about the redox reactions that involve electrons and students are reminded about half equations. This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is suitable for other ages
Active transport
GJHeducationGJHeducation

Active transport

(1)
A whole lesson on the topic of active transport which includes a concise lesson presentation (20 slides) and a set of questions that are used to check on the students’ understanding. This lesson is designed for GCSE students (14 - 16 year olds in the UK) but could be used with A-level students who are covering the topic of movement across cell membranes. The main focus of the lesson is to get students to understand that this is an active process which moves substances against the concentration gradient and therefore needs energy for this process. The final part of the lesson looks at the different types of questions that can accompany this topic and a step-by-step guide is used to answer a difficult longer answer question as a class.
Efficiency
GJHeducationGJHeducation

Efficiency

(1)
An engaging lesson presentation (28 slides) and accompanying worksheet, which together look at how to calculate efficiency and explores how efficiency can be increased by reducing the ways that energy is transferred to less useful stores. The lesson begins by looking at the key term, dissipated, and ensuring that students understand that energy being dissipated to a thermal energy store is one of the main reasons why efficiency will be low. Moving forwards, students are introduced to the equation to calculate efficiency and shown how to leave the answer as a decimal or percentage. Mathematical skills are challenged when calculating the efficiency as a number of units have to be converted. The rest of the lesson looks at a range of methods that can be used to reduce losses. Students will work with the teacher to understand how lubrication works and then a homework task gets them to explore how insulation in homes reduces heat losses. This lesson has been designed for GCSE students.
The Human Endocrine system
GJHeducationGJHeducation

The Human Endocrine system

(1)
An engaging lesson presentation which looks at the organs of the human endocrine system, the hormones they release and briefly considers some of their functions. This lesson has been designed for GCSE students but could be used with younger students at KS3 who are studying the different organ systems in the human body. The lesson begins by looking at the meaning of endo and crine so that students recognise that this is also known as the hormonal system and the hormones are always released directly into the blood. A number of quick competitions have been written into the lesson to maintain engagement and provide opportunities to check understanding in an alternative way to simple questions. This first of these games is called “Any sign of the ENDOCRINE”, where students are challenged to pick the endocrine gland out of a selection of three and then come to board to point to where it would be found on a body outline. The students have to label the diagram on the worksheet included in this lesson and then allocate hormones to 5 of the 6 glands. Time is taken to focus on the pituitary gland and three of the hormones that it releases in FSH, LH and TSH because these relate to the menstrual cycle and the thyroid gland. The final part of the lesson involves students being shown an acronym, HBGT, that they can use in longer answers to ensure that they mention the hormone, blood, the gland that releases the hormone and the target tissue.
Endothermic and exothermic reactions
GJHeducationGJHeducation

Endothermic and exothermic reactions

(1)
This is a fully-resourced lesson which includes an engaging and detailed lesson presentation and differentiated worksheets that together guide students through the key details of endothermic and exothermic reactions. This lesson has been designed for GCSE students but could be used with students entering this topic at A-level who are looking for a recap on the key details. This lesson focuses on a few critical areas of these reactions and those which are often poorly understood. For example, considerable time is taken to ensure that students understand how energy is taken in to break bonds in a reaction and given out when bonds are formed. From this basis, they learn to compare the amount of energy taken in with the amount given out and ultimately determine whether it is an endothermic or exothermic reaction. The format of the lesson is that students are guided through the combustion of methane as an exothermic reaction and shown how to draw reaction profiles and calculate energy changes using the bond energies to prove it is that type of reaction. Having worked with the teacher and each other on this reaction, students are then challenged to bring their skills together to describe, explain and represent an endothermic reaction. If students feel that they will need some assistance on this task, the worksheet has been differentiated so they can still access the learning. There are a number of quick competitions written into the lesson to maintain engagement and also progress checks are found at regular intervals so students can constantly assess their understanding. The lesson finishes with a final game called The E factor which tests the students knowledge from across the whole lesson.
Topic B1.2: What happens in cells? (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B1.2: What happens in cells? (OCR Gateway A GCSE Biology)

3 Resources
This bundle of 3 lessons covers all of the content in the sub-topic B1.2 (What happens in cells) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: DNA Transcription and translation Enzymes Enzyme actions All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C3.1: Introducing chemical reaction (OCR Gateway A GCSE Combined Science & Chemistry)
GJHeducationGJHeducation

Topic C3.1: Introducing chemical reaction (OCR Gateway A GCSE Combined Science & Chemistry)

9 Resources
This bundle of 9 lessons covers the majority of the content in the sub-topic C3.1 (Introducing chemical reactions) of the OCR Gateway A GCSE Combined Science and GCSE Chemistry specification. The topics covered within these lessons include: Formulae of ionic compounds Conservation of mass Writing chemical equations Writing ionic equations The mole Mole calculations All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C5.1: Monitoring chemical reactions (OCR Gateway A GCSE Chemistry)
GJHeducationGJHeducation

Topic C5.1: Monitoring chemical reactions (OCR Gateway A GCSE Chemistry)

6 Resources
This bundle of 6 lessons covers the majority of the content in the sub-topic C5.1 (Monitoring chemical reactions) of the OCR Gateway A GCSE Chemistry specification. The topics covered within these lessons include: Theoretical yield Percentage yield Atom economy Concentration of solution Titrations Titration calculations Gas calculations All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
Alcohols
GJHeducationGJHeducation

Alcohols

(1)
This lesson looks at the homologous series of alcohols, focusing on the properties that they share and guiding students through naming and drawing displayed formula to represent them. It has been designed for GCSE students and time is taken to embed a few selected key details as dictated by the exam board specification. The lesson begins with students meeting the formula for ethanol. This substance will provide the backbone to their understanding as they are guided through drawing the displayed formula so they can visualise how it is done and use to draw diagrams for the others. Students are shown how the general formula for the alkanes and alkenes can be worked out and then challenged to use this to work out the general formula for the alcohols. There is a brief look at the reactions with oxygen and the products that can be made depending upon whether sufficient oxygen is available or not.