Hero image

GJHeducation's Shop

Average Rating4.50
(based on 910 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1164k+Views

1972k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic 1: Molecules, Transport & Health (Edexcel International A-level Biology)
GJHeducationGJHeducation

Topic 1: Molecules, Transport & Health (Edexcel International A-level Biology)

11 Resources
This bundle contains 11 detailed lesson PowerPoints and the variety of tasks that are contained within these slides and the accompanying resources will engage and motivate the students whilst covering the following specification points within topic 1 of the Edexcel International A-level Biology specification: The importance of water as a solvent in transport The difference between monosaccharides, disaccharides and polysaccharides The relationship between the structure and function of monosaccharides The formation and breakdown of disaccharides The relationship between the structure and function of glycogen, amylose and amylopectin The synthesis of triglycerides The differences between saturated and unsaturated lipids The relationship between the structure of capillaries, arteries and veins and their functions Atrial systole, ventricular systole and cardiac diastole as the three stages of the cardiac cycle The operation of the mammalian heart and the major blood vessels The role of haemoglobin in the transport of oxygen and carbon dioxide The oxygen dissociation curve for foetal haemoglobin and during the Bohr effect The course of events that lead to atherosclerosis The blood clotting process If you want to sample the quality of this bundle, then download the glycogen, amylose and amylopectin, cardiac cycle and blood clotting lessons as these have been uploaded for free
Edexcel Int. A-level Biology Topic 2: Membranes, Proteins, DNA and Gene expression
GJHeducationGJHeducation

Edexcel Int. A-level Biology Topic 2: Membranes, Proteins, DNA and Gene expression

20 Resources
Hours and hours of planning have gone into each and every lesson that’s included in this bundle to ensure that the students are engaged and motivated whilst the detailed content of topic 2 of the Edexcel International A-level Biology specification is covered. Membranes, proteins, DNA and gene expression represent some of the most important structures, molecules and processes involved in this subject and a deep understanding of their role in living organisms is important for a student’s success. The 20 lesson PowerPoints and accompanying resources contain a wide range of activities which cover the following topic 2 specification points: Know the properties of gas exchange surfaces in living organisms Understand how the rate of diffusion can be calculated using Fick’s Law of Diffusion Understand how the structure of the mammalian lung is adapted for rapid gas exchange The structure and properties of cell membranes The movement of free water molecules by osmosis The movement across membranes by passive and active transport The role of channel and carrier proteins in membrane transport The basic structure of an amino acid The formation of polypeptides and proteins The structure of proteins The mechanism of action and specificity of enzymes Enzymes are biological catalysts Intracellular and extracellular enzymes The basic structure of mononucleotides The structure of DNA and RNA The process of DNA replication The nature of the genetic code A gene as a sequence of bases on DNA that codes for a sequence of amino acids The process of transcription and translation Errors in DNA replication give rise to mutations Mutations give rise to disorders but many mutations have no observable effect The meaning of key genetic terms Understanding the pattern of monohybrid inheritance Sex linkage on the X chromosome Understand how the expression of a gene mutation in people with cystic fibrosis impairs the functioning of the gaseous exchange, digestive and reproductive systems The uses and implications of genetic screening and prenatal testing Due to the detail included in all of these lessons, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to complete the teaching of the bundle If you would like to sample the quality of these lessons, then download the rapid gas exchange, osmosis, DNA & RNA, genetic code, genetic terms and cystic fibrosis lessons as these have been uploaded for free.
The ultrastructure of cells (Edexcel SNAB)
GJHeducationGJHeducation

The ultrastructure of cells (Edexcel SNAB)

7 Resources
This lesson bundle contains 7 lessons which have been designed to cover the Pearson Edexcel A-level Biology A (Salters Nuffield) specification points which focus on the structure of eukaryotic and prokaryotic cells and the functions of their components. The lesson PowerPoints are highly detailed, and along with the accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content found in topics 2, 3 and 4 of the course: 2.2 (i): Know the structure and function of cell membranes 3.1: Know that all living organisms are made of cells, sharing some common features 3.2: Know the ultrastructure of eukaryotic cells, including nucleus, nucleolus, ribosomes, rough and smooth endoplasmic reticulum, mitochondria, centrioles, lysosomes, and Golgi apparatus 3.3: Understand the role of the rough endoplasmic reticulum (rER) and the Golgi apparatus in protein transport within cells, including their role in the formation of extracellular enzymes 3.4: Know the ultrastructure of prokaryotic cells, including cell wall, capsule, plasmid, flagellum, pili, ribosomes, mesosomes and circular DNA 3.6: Understand how mammalian gametes are specialised for their functions (including the acrosome in sperm and the zona pellucida in the egg) 3.13: Understand how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems 4.7: Know the ultrastructure of plant cells (cell walls, chloroplasts, amyloplasts, vacuole, tonoplast, plasmodesmata, pits and middle lamella) and be able to compare it with animal cells.
Mitosis & the cell cycle (AQA A-level Biology)
GJHeducationGJHeducation

Mitosis & the cell cycle (AQA A-level Biology)

(1)
This fully-resourced lesson describes the behaviour of chromosomes during interphase, mitosis and cytokinesis in the cell cycle. The detailed PowerPoint and accompanying resources have been designed to cover the first half of point 2.2 as detailed in the AQA A-level Biology specification whereas uncontrolled cell division and cancer and binary fission are covered in upcoming lessons. Depending upon the exam board taken at GCSE, the knowledge and understanding of mitosis and the cell cycle will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson and to address existing errors, key points are emphasised throughout. The cell cycle is introduced at the start of the lesson and the quantity of DNA inside the parent cell is described as diploid and as 2n. A quiz competition has been written into the lesson and this runs throughout, challenging the students to identify the quantity of DNA in the cell (in terms of n) at different points of the cycle. Moving forwards, the first real focus is interphase and the importance of DNA replication is explained so that students can initially recognise that there are pairs of identical sister chromatids and then can understand how they are separated later in the cycle. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. Centrioles were not covered in the topic 2.1 lessons on cell structures so a quick task will introduce them to these organelles who are responsible for the production of the spindle apparatus, Students will understand how the cytoplasmic division that occurs in cytokinesis results in the production of genetically identical daughter cells. This leads into a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture.
Topic 2: Cells (AQA A-level Biology)
GJHeducationGJHeducation

Topic 2: Cells (AQA A-level Biology)

20 Resources
This bundle contains 20 PowerPoint lessons which are highly-detailed and are fully-resourced with differentiated worksheets. Intricate planning means that the wide range of activities included in these lessons will engage and motivate the students, check on their current understanding and their ability to make links to previously covered topics and most importantly will deepen their understanding of the following specification points in topic 2 (Cells) of the AQA A-level Biology specification: Structure and function of the organelles in eukaryotic cells The specialised cells in complex, multicellular organisms The structure of prokaryotic cells The structure of viruses which are acellular and non-living Measuring objects under an optical microscope Use of the magnification formula The principles of cell fractionation and ultracentrifugation The behaviour of chromosomes during the stages of the cell cycle Calculating the mitotic index Binary fission The basic structure of cell membranes The role of phospholipids, proteins, glycoproteins, glycolipids and cholesterol Simple diffusion Facilitated diffusion Osmosis, explained in terms of water potential The role of carrier proteins and the hydrolysis of ATP in active transport Co-transport as illustrated by the absorption of sodium ions and glucose by the cells lining the mammalian ileum Recognition of different cells by the immune system The identification of pathogens from antigens The phagocytosis of pathogens The cellular response involving T lymphocytes The humoral response involving the production of antibodies by plasma cells The structure of an antibody The roles of plasma cells and memory cells in the primary and secondary immune response The use of vaccines to protect populations The differences between active and passive immunity The structure of the human immunodeficiency virus and its replication in helper T cells How HIV causes the symptoms of AIDS Why antibiotics are ineffective against viruses The use of antibodies in the ELISA test If you would like to sample the quality of these lessons, then download the eukaryotic animal cells, viruses, osmosis, lymphocytes, HIV and AIDS lessons as these have been shared for free. I have also uploaded a lesson on optical microscopes (for free) but it isn’t included in this bundle as the limit of 20 resources has been reached!
The sliding filament model of MUSCULAR CONTRACTION (OCR A-level Biology A)
GJHeducationGJHeducation

The sliding filament model of MUSCULAR CONTRACTION (OCR A-level Biology A)

(1)
This is a fully-resourced lesson that covers the content of specification point 5.1.5 (l) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the sliding filament model of muscular contraction. The wide range of activities included in the lesson will engage and motivate the students whilst the understanding and previous knowledge checks will not only allow them to assess their progress but also challenge them to make links to other Biology topics. The lesson begins by using an idea from the quiz show POINTLESS to get them to recognise that myology is the study of muscles. This leads nicely into the next task, where they have to identify three further terms (from 12) which will also begin with myo and are the names of structures involved in the arrangement of skeletal muscle. Key terminology is used throughout the lesson so that students feel comfortable when they encounter this in questions. Students are introduced to the sarcomere and the bands and zones that are found within a myofibril so they can discover how most of these structures narrow but the A band, which is the length of the myosin filament, stays the same length between resting and contracted muscle. This has been designed to lead into a discussion point where they are encouraged to consider how the sarcomere can narrow but the lengths of the myofilaments can remain the same. The main task of the lesson involves the formation of a bullet point description of the sliding filament model where one event is the trigger for the next. Time is taken during this section to focus on the involvement of the calcium ions but also ATP and the idea of the sources of this molecule, including creatine phosphate, are discussed in more detail later in the lesson. The final part of the lesson involves students having to apply their knowledge by describing the effect on muscle contraction when a part of a structure is unable to function correctly. This lesson has been designed for students studying the OCR A-level Biology course and ties in nicely with the other lessons on this particular topic such as neuromuscular junctions as well as the other uploaded lessons from module 5
Evolution, natural selection & adaptations (Edexcel A level Biology B)
GJHeducationGJHeducation

Evolution, natural selection & adaptations (Edexcel A level Biology B)

(1)
This fully-resourced lesson describes how evolution can come through natural selection and acts on variation to bring about adaptations. The PowerPoint and accompanying resources have been designed to cover specification points 3.2 (i) & (ii) of the Edexcel A-level Biology B specification and considers a range of different behavioural, anatomical and physiological adaptations. President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin to enable them to see the principles of natural selection. This can then be used when describing how the anatomy of the modern-day giraffe has evolved over time. The concept of convergent evolution is introduced and links are made to the need for modern classification techniques. Moving forwards, students will understand how natural selection leads to adaptations and a quick quiz competition introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. The final part of the lesson focuses on the adaptations of the anteater and links are made to the topic of classification hierarchy which was covered at the start of topic 3… Due to the extensiveness of this lesson and the detail contained within the resources, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to deliver this lesson.
OCR A-level Biology A 5.2.1 REVISION (Photosynthesis)
GJHeducationGJHeducation

OCR A-level Biology A 5.2.1 REVISION (Photosynthesis)

(1)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Module 5.2.1 (Photosynthesis) of the OCR A-level Biology A specification. The sub-topics and specification points that are tested within the lesson include: The interrelationship between photosynthesis and respiration The structure of a chloroplast The importance of photosynthetic pigments in photosynthesis The light dependent stage of photosynthesis The fixation of carbon dioxide and the light independent stage of photosynthesis Factors affecting photosynthesis Students will be engaged through the numerous quiz rounds such as “Can you DEPEND on your knowledge” and “Photosynthesising the SAFE way” whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
Factors affecting photosynthesis (OCR A-level Biology)
GJHeducationGJHeducation

Factors affecting photosynthesis (OCR A-level Biology)

(1)
This fully-resourced lesson describes how light intensity, carbon dioxide concentration and temperature limit the rate of photosynthesis. The PowerPoint and accompanying resources have been designed to cover point 5.2.1 (g) (i) of the OCR A-level Biology A specification and also includes a brief consideration of water stress. The lesson has been specifically written to tie in with the three previous lessons in this module which covered the structure of the chloroplast, the light-dependent and light-independent stages and the uses of TP. Exam-style questions are included throughout the lesson and these require the students to explain why light intensity is important for both reactions as well as challenging them on their ability to describe how the relative concentrations of GP, TP and RuBP would change as carbon dioxide concentration decreases. There are also links to previous topics such as enzymes when they are asked to explain why an increase in temperature above the optimum will limit the rate of photosynthesis. Step by step guides are included to support them to form some of the answers and mark schemes are always displayed so that they can quickly assess their understanding and address any misconceptions.
Preparing slides & staining (OCR A-level Biology)
GJHeducationGJHeducation

Preparing slides & staining (OCR A-level Biology)

(1)
This lesson describes how to prepare and examine microscope slides and the use of staining in light microscopy. The PowerPoint and accompanying resources have been designed to cover points 2.1.1 (b & c) of the OCR A-level Biology A specification and describe how the eyepiece graticule and stage micrometer are used to measure the size of an object with a light microscope and the use of eosin and methylene blue. The main task of this lesson involves a step by step guide which walks students through the methodology and the use of the scale on the stage micrometer to identify the size of the divisions of the eyepiece graticule and this will need them to convert between units. Moving forwards, the students are challenged to apply this method to a series of exam-style questions and the mark scheme is displayed on the PowerPoint so that they can assess their understanding. In the last lesson, they were briefly introduced to the idea that some specimens need to be stained as light passes completely through transparent samples and the remainder of the lesson builds on this knowledge. Students will learn that cell populations, structures within cells and biological tissues can be distinguished using stains and a series of questions will challenge them to make links to biological molecules, organelles and infections. Links are also made to the upcoming topic of epithelial tissue in the respiratory system. This lesson has been specifically written to tie in with the previous lesson on light and electron microscopes and 2 rounds of the sub-module quiz competition are found in this lesson.
Module 2.1.1: Cell structure (OCR A-level Biology A)
GJHeducationGJHeducation

Module 2.1.1: Cell structure (OCR A-level Biology A)

6 Resources
As cells are the building blocks of living organisms, and Biology is the study of life, it’s fairly obvious that a clear understanding of cell structure is going to be critical for the success of an A-level student on the OCR A-level Biology A course. The 6 lessons included in this bundle are highly detailed and have been intricately planned to contain the detail needed at this level and to make links to topics in the other modules of the specification. The lesson PowerPoints and accompanying resources contain a wide range of tasks which will engage and motivate the students whilst covering the following specification points in module 2.1.1: The use of microscopy to observe and investigate different types of cell and cell structure in a range of eukaryotic organisms The use of the eyepiece graticule and stage micrometer The use of staining in light microscopy The use and manipulation of the magnification formula The difference between resolution and magnification The ultrastructure of eukaryotic cells and the functions of the different cellular components The interrelationship between the organelles involved in the production and secretion of proteins The importance of the cytoskeleton The similarities and differences in the structure and ultrastructure of prokaryotic and eukaryotic cells If you would like to sample the quality of the lessons included in this bundle, then download “The use of microscopy” and “cytoskeleton” lessons as these have been uploaded for free
Epistasis (OCR A-level Biology)
GJHeducationGJHeducation

Epistasis (OCR A-level Biology)

(1)
This fully-resourced lesson explores how the presence of particular alleles at one locus can mask the expression of alleles at a second locus in epistasis. The detailed and engaging PowerPoint and associated resources have been designed to cover the part of point 6.1.2 (b[ii]) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the use of phenotypic ratios to identify epistasis. This is a topic which students tend to find difficult, and therefore the lesson was written to split the topic into small chunks where examples of dominant, recessive and complimentary epistasis are considered, discussed at length and then explained. Understanding checks, in various forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. There are regular links to related topics such as dihybrid inheritance so that students can meet the challenge of interpreting genotypes as well as recognising the different types of epistasis.
OCR A-level Biology 2.1.4 REVISION (Enzymes)
GJHeducationGJHeducation

OCR A-level Biology 2.1.4 REVISION (Enzymes)

(1)
This revision resource has been designed to include a range of activities such as exam questions, understanding checks and quiz competitions which will motivate the students whilst they assess their understanding of the content found in module 2.1.4 (Enzymes) of the OCR A-level Biology A specification. The resource includes a detailed and engaging Powerpoint (70 slides) and associated worksheets The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention: The role of enzymes as biological catalysts that lower the activation energy The lock and key theory and the induced fit hypotheses The mechanism of enzyme action to include the tertiary structure The effect of inhibitors on the rate of enzyme-controlled reactions The effect of pH on the rate of reaction Coenzymes and cofactors The idea of an optimum temperature and explaining the decrease in rate when temperatures increase or decrease Calculating the temperature coefficient In addition to these topics, some topics from other modules such as the PCR and precursor molecules are tested in order to challenge the students on their ability to make links between the modules.
Neuromuscular junctions (OCR A-level Biology A)
GJHeducationGJHeducation

Neuromuscular junctions (OCR A-level Biology A)

(1)
This concise lesson covers the content of specification point 5.1.5 (l) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the action of neuromuscular junctions. Due to a number of similarities between these structures and cholinergic synapses, this lesson uses prior knowledge of these connections between neurones to build a good understanding of the junctions. Students will discover that the events that occur at an axon tip mirror those which happen at the pre-synaptic bulb and this is then developed to look at the differences in terms of the events once the acetylcholine has bound to its receptor sites. There is a focus on the structure of the sarcolemma and time is taken to explain how the action potential is passed from this membrane to the transverse tubules in order to stimulate the release of calcium ions from the sarcoplasmic reticulum. As a result, this lesson ties in nicely with the following lesson on the contraction of skeletal muscle and students will be able to link the binding to troponin in that lesson to the release of these ions from this lesson. Both of the main tasks of the lesson have been differentiated so that students of all abilities can access the work and make progress. This lesson has been designed for those students studying on the OCR A-level Biology course and ties in nicely with the other uploaded lessons on module 5.1.5 (Animal and plant responses)
Cell structure & biological molecules (OCR A-level Biology A)
GJHeducationGJHeducation

Cell structure & biological molecules (OCR A-level Biology A)

19 Resources
It’s fair to say that cell structure and biological molecules are two of the most important topics in the OCR A-level Biology A course and all 19 lessons that are included in this bundle have been planned at length to cover the module 2.1.1 & 2.1.2 specification points in the detail required at this level. The lesson PowerPoints and their accompanying resources contain a wide range of tasks as well as regular checks to allow students to assess their understanding of the current content as well as prior knowledge checks to emphasise the importance of making links to topics in other modules. The following specification points in modules 2.1.1 (cell structure) and 2.1.2 (biological molecules) are covered by the lessons in this bundle: 2.1.1 The use of microscopy to observe and investigate different types of cell and cell structure in a range of eukaryotic organisms The use of the eyepiece graticule and stage micrometer The use of staining in light microscopy The use and manipulation of the magnification formula The difference between magnification and resolution The ultrastructure of eukaryotic cells and the functions of the different cellular components The interrelationship between the organelles involved in the production and secretion of proteins The importance of the cytoskeleton The similarities and differences between the ultrastructure of prokaryotic and eukaryotic cells 2.1.2 The properties and roles of water in living organisms The concept of monomers and polymers and the importance of condensation and hydrolysis reactions The chemical elements that make up biological molecules The structure and properties of glucose and ribose The synthesis and breakdown of a disaccharide and a polysaccharide by the formation and breakage of glycosidic bonds The structure of starch, glycogen and cellulose molecules The relationship between the structure, function and roles of triglycerides, phospholipids and cholesterol in living organisms The general structure of an amino acid The synthesis and breakdown of dipeptides and polypeptides The levels of protein structure The structure and function of globular proteins The properties and functions of fibrous proteins The key inorganic ions involved in biological processes The chemical tests for proteins, reducing and non-reducing sugars, starch and lipids If you would like to sample the quality of the lessons included in this bundle, then download the following lessons as they have been uploaded for free: The use of microscopy The importance of the cytoskeleton Properties and roles of water Glucose & ribose General structure of an amino acid Dipeptides, polypeptides and protein structure
Cell signalling (OCR A-level Biology A)
GJHeducationGJHeducation

Cell signalling (OCR A-level Biology A)

(1)
This lesson describes how communication occurs between cells by cell signalling. The PowerPoint and accompanying resource have been designed to cover point 5.1.1 (b) of the OCR A-level Biology A specification and focuses on the use of the nervous system for communication between the CNS and effectors and the release of hormones to bring about responses. As this is one of the first lessons to be delivered in module 5, this lesson has been specifically planned to prepare students for the upcoming topics of neuronal and hormonal communication. Students begin by learning that cell signalling governs the basic activities of cells and coordinates multiple cell actions. Moving forwards, the next part of the lesson focuses on the nervous system and students will learn that an electrical impulse will be conducted on a somatic or an autonomic motor neurone depending upon the type of muscle to be stimulated. This provides some introductory information for modules 5.1.3 and 5.1.5. The remainder of the lesson describes how the hormones that are secreted by the cells of endocrine glands allow communication with target cells and the different actions of peptide and steroid hormones is considered.
OCR A-Level Biology Module 3.1.2: Transport in Animals REVISION
GJHeducationGJHeducation

OCR A-Level Biology Module 3.1.2: Transport in Animals REVISION

(1)
A fun and engaging lesson presentation (33 slides) and associated worksheet that uses exam questions, with fully explained answers, quick tasks and competitions to allow students to assess their understanding of Module 3.1.2 (Transport in Animals). The students will enjoy the lesson whilst being able to recognise which areas of the specification need further attention. Competitions included in the lesson are “SPOT THE ERROR”, “Where’s Lenny” and “Crack the code”
Module 5.2.2: Respiration (OCR A-level Biology A)
GJHeducationGJHeducation

Module 5.2.2: Respiration (OCR A-level Biology A)

9 Resources
All 9 of the lessons included in this bundle are fully resourced and have been designed to cover the detailed content of module 5.2.2 (Respiration) of the OCR A-Level Biology A specification. The following specification points are covered by this bundle of lessons: The need for cellular respiration The structure of the mitochondrion The process and site of glycolysis The link reaction and its site in the cell The process and site of the Krebs cycle The importance of coenzymes in cellular respiration The process and site of oxidative phosphorylation The chemiosmotic theory The process of anaerobic respiration in eukaryotes The difference in the relative energy values of carbohydrates, lipids and proteins The use and interpretation of the respiratory quotient All of the lessons are detailed and engaging and contain regular progress checks so that students can assess their understanding of the current topic as well as prior knowledge checks to enable links between topics and modules to be seen It is estimated that these lessons will cover in excess of a month’s A-level Biology teaching time
OCR A-level Biology 2.1.3 REVISION (Nucleotides and nucleic acids)
GJHeducationGJHeducation

OCR A-level Biology 2.1.3 REVISION (Nucleotides and nucleic acids)

(1)
This is a detailed, engaging and fully-resourced REVISION LESSON which allows students of all abilities to assess their understanding of the content in module 2.1.3 (Nucleotides and nucleic acids) of the OCR A-level Biology A specification. Considerable time has been taken to design the lesson to include a wide range of activities to motivate the students whilst they evaluate their knowledge of DNA, RNA and the roles of these nucleic acids in DNA replication and protein synthesis. Most of the tasks have been differentiated so that students of differing abilities can access the work and move forward as a result of the tasks at hand. This lesson has been planned to cover as much of the specification as possible but the following sub-topics have received particular attention: The structure of DNA Phosphorylated nucleotides DNA replication Transcription and translation Gene mutations and their affect on the primary structure of a polypeptide The structure of RNA In addition to a focus on the current topic, links are made throughout the lesson to other topics such as the journey of an extracellular protein following translation and the cell cycle. If you like the quality of this revision lesson, please look at the other uploaded revision lessons for this module and for this specification
OCR A-level Biology A Module 5.2.2 REVISION (Respiration)
GJHeducationGJHeducation

OCR A-level Biology A Module 5.2.2 REVISION (Respiration)

(1)
This fully-resourced REVISION LESSON has been designed to provide the students with numerous opportunities to assess their understanding of the content of module 5.2.2 (Respiration) of the OCR A-level Biology A specification. The importance of this metabolic reaction is obvious and this is reflected in the volume of questions in the terminal exams which require an in depth knowledge of the stages of both aerobic and anaerobic respiration. The lesson contains a wide range of activities that cover the following points of the specification: Glycolysis as a stage of aerobic and anaerobic respiration The use and production of ATP through respiration Anaerobic respiration in mammalian muscle tissue The stages of aerobic respiration that occur in the mitochondrial matrix Oxidative phosphorylation The use of respirometers Calculating the respiratory quotient value for different respiratory substrates Revision lessons which cover the other sub-modules of module 5 are uploaded and tie in well with this content