Hero image

GJHeducation's Shop

Average Rating4.50
(based on 910 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1164k+Views

1972k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
OCR A-level Biology Module 4 REVISION (Biodiversity, evolution and disease)
GJHeducationGJHeducation

OCR A-level Biology Module 4 REVISION (Biodiversity, evolution and disease)

(1)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within module 4 (Biodiversity, evolution and disease) of the OCR A-level Biology specification. The topics tested within this lesson include: Communicable diseases, biodiversity, classification and evolution Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
OCR A-level Biology Module 6.3.1 REVISION (Ecosystems)
GJHeducationGJHeducation

OCR A-level Biology Module 6.3.1 REVISION (Ecosystems)

(1)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within module 6.3.1 (Ecosystems) of the OCR A-level Biology A specification. The topics tested within this lesson include: Ecosystems Transfer of biomass Recycling within ecosystems Succession Studying ecosystems Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
Chi-squared test (OCR A-level Biology)
GJHeducationGJHeducation

Chi-squared test (OCR A-level Biology)

(1)
This lesson guides students through the use of the chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated worksheets that have been designed to cover point 6.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the test to compare the observed and expected results of a genetic cross The lesson has been written to include a step-by-step guide that demonstrates how to carry out the test in small sections. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty.
OCR A-level Biology A PAPER 1 REVISION (Biological processes)
GJHeducationGJHeducation

OCR A-level Biology A PAPER 1 REVISION (Biological processes)

(1)
This resource has been designed to motivate students whilst they evaluate their understanding of the content in modules 1, 2, 3 and 5 of the OCR A-level Biology A specification which can be assessed in PAPER 1 (Biological processes). The resource includes a detailed and engaging Powerpoint (149 slides) and is fully-resourced with differentiated worksheets that challenge the students on a wide range of topics. The resource has been written to include different types of activities such as exam questions with explained answers, understanding checks and quiz competitions. The aim was to cover as much of the specification content as possible but the following topics have been given particular attention: Monosaccharides, disaccharides and polysaccharides Glycogen and starch as stores and providers of energy The homeostatic control of blood glucose concentration Osmoregulation Lipids Ultrafiltration and selective reabsorption Diabetes mellitus Voluntary and involuntary muscle The autonomic control of heart rate The organisation of the nervous system The gross structure of the human heart Haemoglobin and the Bohr shift Bonding The ultrastructure of plant cells Cyclic vs non-cyclic photophosphorylation Oxidative phosphorylation Anaerobic respiration in eukaryotes Helpful hints and tips are given throughout the resource to help students to structure their answers. This resource can be used in the lead up to the actual Paper 1 exam or earlier in the course when a particular area of modules 1, 2, 3 or 5 is being studied. If you are happy with this resource, why not look at the one which has been designed for Paper 2 (Biological diversity)?
AS Unit 2 Topic 1: All organisms are related through their evolutionary history (WJEC A-level Biology)
GJHeducationGJHeducation

AS Unit 2 Topic 1: All organisms are related through their evolutionary history (WJEC A-level Biology)

5 Resources
All 5 lessons in this lesson bundle are highly detailed to cover the specification points shown below that are found in AS unit 2, topic 1 of the WJEC A-level Biology specification: The classification of organisms into groups based on their evolutionary relationships The need for classification The three-domain classification system The characteristic features of the five kingdoms of living organisms The use of physical features and biochemical methods to assess the relatedness of organisms The concept of species The use of the binomial naming system Biodiversity as the variety of organisms found within a specified geographic region Biodiversity can be assessed in a habitat using Simpson’s index of diversity Biodiversity can be assessed within a species at a genetic level Biodiversity can be assessed at a molecular level using DNA fingerprinting Biodiversity has been generated through natural selection Anatomical, physiological and behavioural adaptations As well as the A-level Biology content within the slides, current understanding and prior knowledge checks in the form of exam-style questions, differentiated tasks and quiz competitions are included throughout to allow the students to assess their progress If you would like to sample the quality of the lessons included in this bundle, then download the classification, species and the binomial naming system lesson as this has been shared for free
Monoclonal antibodies
GJHeducationGJHeducation

Monoclonal antibodies

(4)
An engaging lesson presentation (32 slides) and differentiated worksheets that look at the meaning of the substances termed monoclonal antibodies, explains how they are produced and explores their different applications. The lesson begins by breaking the term down into three parts so that students can understand that these substances are proteins that attach to antigens and come from a single clone of cells. Students will meet key terms such as lymphocytes, myelomas and hybridomas and will be able to link them to understand how these antibodies are produced. Moving forwards, time is taken to focus on the application of monoclonal antibodies in pregnancy tests. There are regular progress checks throughout the lesson so that students can assess their understanding and a set homework is included as part of the lesson. This lesson has been written for GCSE students but can be used with lower ability A-level students who are studying this topic
Edexcel GCSE Combined Science P2 (Motion and forces) REVISION
GJHeducationGJHeducation

Edexcel GCSE Combined Science P2 (Motion and forces) REVISION

(3)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the sub-topics found within Topic P2 (Motion and forces) of the Edexcel GCSE Combined Science specification. The sub-topics and specification points that are tested within the lesson include: Recall and use the equations to calculate average speed Recall and use the equation to calculate acceleration Use the equations of motion Analyse velocity-time graphs to be able to compare and calculate accelerations and calculate the distance travelled from the area under the graph Recall and use Newton’s second law involving force, mass and acceleration Describe the relationship between the weight of a body and gravitational field strength Define momentum, recall and use the equation Describe examples of momentum in collisions Recall that stopping distance is made up of the sum of the thinking distance and braking distance Explain the factors that affect stopping distance Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
Cambridge IGCSE Chemistry Topic 4 REVISION (Stoichiometry)
GJHeducationGJHeducation

Cambridge IGCSE Chemistry Topic 4 REVISION (Stoichiometry)

(3)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 4 (Stoichiometry) of the Cambridge IGCSE Chemistry (0620) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers. The specification points that are covered in this revision lesson include: CORE Use the symbols of the elements and write the formulae of simple compounds Construct word equations and simple balanced chemical equations Define relative molecular mass, Mr, as the sum of the relative atomic masses SUPPLEMENT Determine the formula of an ionic compound from the charges on the ions present Construct equations with state symbols Define the mole and the Avogadro constant Use the molar gas volume, taken as 24 dm3 at room temperature and pressure Calculate stoichiometric reacting masses, volumes of gases and solutions, and concentrations of solutions expressed in mol / dm3. The students will thoroughly enjoy the range of activities, which include quiz competitions such as “In the BALANCE” where they have to compete to be the 1st to balance an equation and recognise the number of moles involved whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams.
Choosing reaction conditions (REVERSIBLE REACTIONS)
GJHeducationGJHeducation

Choosing reaction conditions (REVERSIBLE REACTIONS)

(2)
A thought-provoking lesson which explores why certain conditions are chosen for reversible reactions. Throughout this lesson, students are challenged to think about the topic in three ways. Of course, they have to consider the chosen conditions from a Scientific angle by knowing how temperature and pressure affect the position of the equilibrium. They must also think about the business (and health) side of the argument by recognising that increased pressures are both dangerous and expensive. Finally, they are taught recognise how the chosen conditions are in fact a compromise which has taken both the Science and business into account. Students are guided through the choice of conditions for the production of methanol so that they can apply their knowledge to the production of ammonia by the Haber process. This lesson has been designed for GCSE students.
Topic 3: Organisms exchange substances with their environment (AQA A-level Biology)
GJHeducationGJHeducation

Topic 3: Organisms exchange substances with their environment (AQA A-level Biology)

17 Resources
This lesson bundle contains 17 detailed and fully-resourced lessons which cover the following specification points in topic 3 of the AQA A-level Biology specification: Topic 3.1 The relationship between the size of an organism or structure and its surface area to volume ratio The development of systems in larger organisms as adaptations that facilitate exchange as this ratio reduces Topic 3.2 Adaptations of gas exchange surfaces as shown by gas exchange in single-celled organisms, insects, bony fish and the leaves of dicotyledonous plants The gross structure of the human gas exchange system The essential features of the alveolar epithelium as a surface over which gas exchange takes place The mechanism of breathing to include the role of the diaphragm and the intercostal muscles Topic 3.3 During digestion, large molecules are hydrolysed to smaller molecules Digestion in mammals by amylases, disaccharidases, lipase, endopeptidases, exopeptidases and dipeptidases Mechanisms for the absorption of the products of digestion by cells lining the ileum of mammals Topic 3.4.1 The structure and role of haemoglobin in the loading, transport and unloading of oxygen The effects of carbon dioxide concentration on the dissociation of oxyhaemoglobin The general pattern of blood circulation in a mammal The gross structure of the human heart Pressure and volume changes and valve movements during the cardiac cycle The structure of the arteries, arterioles and veins The formation of tissue fluid and its return to the circulatory system Topic 3.4.2 Xylem as the tissue that transports water The cohesion-tension theory of water transport Phloem as the tissue that transports organic substances in plants The mass flow hypothesis for the mechanism of translocation in plants If you would like to sample the quality of the lessons included in this bundle, then download the following lessons which have been uploaded for free Alveolar epithelium Absorption in the ileum Arteries, arterioles and veins Formation of tissue fluid Translocation
Sex determination
GJHeducationGJHeducation

Sex determination

(2)
A fully-resourced lesson which looks at how the sex chromosomes which determine gender are inherited in humans. The lesson includes an engaging lesson presentation (24 slides) and an associated worksheet containing knowledge recall and application questions. The lesson begins with a range of different quiz competitions which enable the students to get the answers of X, Y, zygote and 23. With a little bit of assistance, students are challenged to bring these terms together to complete a passage about how the inheritance of either an XX genotype will lead to a female or a XY genotype will lead to a male. Moving forwards, students are told how they will be expected to be able to construct a genetic diagram to show the inheritance of gender and so are given a quick recap before being challenged to do just that. The last part of the lesson gets students to discuss and consider whether females or males are responsible for determining sex in terms of their gametes. There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students primarily but the content is suitable for both KS3 and even A-level students
Ventilation and gas exchange in bony fish (OCR A-level Biology)
GJHeducationGJHeducation

Ventilation and gas exchange in bony fish (OCR A-level Biology)

(2)
This lesson describes the roles of the buccal cavity, operculum, gill lamellae and countercurrent flow in ventilation and gas exchange in bony fish. The detailed PowerPoint and accompanying resources are part of the first lesson in a series of 2 that have been designed to cover the details of point 3.1.1 (f) of the OCR A-level Biology A specification. The second lesson in this series covers the mechanisms of ventilation and gas exchange in insects. The lesson has been specifically planned to prepare students for the content of module 3.1.2 (Transport in animals) and therefore begins with an introduction and a brief description of the single circulatory system of a fish as this has an impact on the delivery of deoxygenated blood to the lamellae. A quick quiz competition is used to introduce the operculum and then the flow of blood along the gill arch and into the primary lamellae and then into the capillaries in the secondary lamellae is described. The next task challenges the students to use their knowledge of module 2 to come up with the letters that form the key term, countercurrent flow. This is a key element of the lesson and tends to be a feature that is poorly understood, so extra time is taken to explain the importance of this mechanism. Students are shown two diagrams, where one contains a countercurrent system and the other has the two fluids flowing in the same direction, and this is designed to support them in recognising that this type of system ensures that the concentration of oxygen is always higher in the oxygenated water than in the blood in the lamellae. The remainder of the lesson focuses on the coordinated movements of the buccal-opercular pump to ensure that the water continues to flow over the gills. Current understanding and prior knowledge checks are included throughout the lesson and students can assess their progress against the mark schemes which are embedded into the PowerPoint
Optical and electron microscopes (AQA A-level Biology)
GJHeducationGJHeducation

Optical and electron microscopes (AQA A-level Biology)

(2)
This fully-resourced lesson describes the principles and limitations of optical, transmission electron and scanning electron microscopes. The engaging PowerPoint and accompanying resources have been designed to cover the specification details at the start of topic 2.1.3 of the AQA A-level Biology course and also explains the difference between magnification and resolution. When designing all four of the lessons to cover the detail of 2.1.3, I was conscious that microscopes and the methods of studying cells is a topic that doesn’t always attract the full attention of the students. In line with this, I aimed to plan lessons that encouraged engagement so that the likelihood of knowledge retention and understanding was increased. An ongoing quiz competition runs across the 4 lessons and in this particular lesson, rounds such as YOU DO THE MATH and IT’S TIME FOR ACTION will introduce key terms and values in a fun and memorable way. Time is taken to look at the key details of each of the types of microscope and students will be able to describe how light or the transmission of electrons through or across a specimen will form an image. Students will come to recognise the difference between magnification and resolution and examples are provided and exam-style questions used to check on understanding. As well as current understanding checks, prior knowledge checks challenge the students to make links to other biological topics which include specialised cells and tissues, cell structures and biological molecules. As detailed above, this lesson has been written to be the first in a series of 4 lessons and the others, which are uploaded are: Measuring the size of an object viewed under an optical microscope Use of the magnification formula Cell fractionation and ultracentrifugation
AQA GCSE Science B7 REVISION (Ecology)
GJHeducationGJHeducation

AQA GCSE Science B7 REVISION (Ecology)

(2)
An engaging lesson presentation (63 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within the Biology unit B7 (Ecology) of the AQA GCSE Combined Science specification (specification unit B4.7). The topics that are tested within the lesson include: Communities Abiotic factors Biotic factors Levels of organisation Recycling materials Deforestation Global warming Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" whilst crucially being able to recognise those areas which need further attention
OCR Gateway A GCSE Combined Science B3 (Organism-level systems) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science B3 (Organism-level systems) REVISION

(1)
An engaging lesson presentation (66 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module B3 of the OCR Gateway A GCSE Combined Science specification. The topics that are tested within the lesson include: Nervous system Reflexes Hormones Negative feedback The menstrual cycle Controlling reproduction Using hormones to treat infertility Students will be engaged through the numerous activities including quiz rounds like "From Numbers 2 LETTERS" and "Take the IVF Hotseat" whilst crucially being able to recognise those areas which need further attention
Gene mutations (OCR A-level Biology)
GJHeducationGJHeducation

Gene mutations (OCR A-level Biology)

(1)
This fully-resourced lesson describes the beneficial, neutral and harmful effects of gene mutations on the primary structure of a polypeptide. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 6.1.1 (a) of the OCR A-level Biology A specification which states that students should be able to understand how substitutions, deletions and insertions change the base sequence and describe how this affects protein production and function. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was covered in module 2.1.3. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a task called known as THE WALL is used to introduce to the names of three types of gene mutation whilst challenging the students to recognise terms which are associated with the genetic code and were met back in 2.1.3. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution
Polysaccharides (AQA A-level Biology)
GJHeducationGJHeducation

Polysaccharides (AQA A-level Biology)

(1)
This detailed and fully-resourced lesson describes the relationship between the structure and function of the polysaccharides: glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover the third part of point 1.2 of the AQA A-level Biology specification and clear links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. By the end of this lesson, students should understand how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also whether it spirals or not. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses once they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. In the final part of the lesson, time is taken to focus on the formation of cellulose microfibrils and macrofibrils to explain how plant cells have the additional strength needed to support the whole plant. Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete
Carbohydrates (WJEC A-level Biology)
GJHeducationGJHeducation

Carbohydrates (WJEC A-level Biology)

(1)
This engaging lesson describes the structure, properties and functions of the monosaccharides, disaccharides and polysaccharides. The PowerPoint lesson has been designed to cover point [c] as detailed in AS unit 1, topic 1 of the WJEC A-level Biology specification and it makes clear links to the upcoming lessons in this topic on alpha and beta glucose and the properties of starch, glycogen, cellulose and chitin. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. A number of quick quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the first round allows the students to meet some of common monosaccharides. Moving forwards, students will learn that a disaccharide is formed when two of these monomers are joined together and they are then challenged on their knowledge of condensation reactions which were originally encountered during the lesson on water. Students will understand how multiple reactions and multiple glycosidic bonds will result in the formation of a polysaccharide and glycogen, starch and cellulose are recalled and there is a brief introduction to chitin. The final part of the lesson considers how hydrolysis reactions allow polysaccharides and disaccharides to be broken back down into monosaccharides.
Isolation and speciation (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Isolation and speciation (Pearson Edexcel A-level Biology A)

(1)
This fully-resourced lesson explores how reproductive isolation can potentially lead to the formation of a new species by speciation . The engaging PowerPoint and accompanying resources have been designed to cover point 5.19 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should understand how isolation reduces gene flow between populations which can lead to allopatric or sympatric speciation. The lesson begins by using the example of a hinny, which is the hybrid offspring of a horse and a donkey, to challenge students to recall the biological classification of a species. Moving forwards, students are introduced to the idea of speciation and the key components of this process, such as isolation and selection pressures, are covered and discussed in detail. Understanding and prior knowledge checks are included throughout the lesson to allow the students to not only assess their progress against the current topic but also to make links to earlier topics in the specification. Time is taken to look at the details of allopatric speciation and how the different mutations that arise in the isolated populations and genetic drift will lead to genetic changes. The example of allopatric speciation in wrasse fish because of the isthmus of Panama is used to allow the students to visualise this process. The final part of the lesson considers sympatric speciation and again a wide variety of tasks are used to enable a deep understanding to be developed.
Protein transport within cells (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Protein transport within cells (Edexcel Int. A-level Biology)

(1)
This lesson describes the role of the rER and the Golgi apparatus in the formation of proteins, the transport within cells and their secretion. The PowerPoint and accompanying resources have been designed to cover point 3.4 of the Edexcel International A-level Biology specification and also includes key details about the role of the cytoskeleton in the transport of the vesicles that contain the protein between the organelles and the membrane. The lesson begins with the introduction of the cytoskeleton and explains how this network of protein structures transverses across the cytoplasm and is fundamental to the transport of molecules between organelles. The lesson has been planned to closely tie in with the previous lesson on the ultrastructure of eukaryotic cells and students are challenged on their knowledge of the function of the organelles involved in protein formation (and modification) through a series of exam-style questions. By comparing their answers against the mark scheme embedded in the PowerPoint, students will be able to assess their understanding of the following: Transcription in the nucleus to form an mRNA strand and the exit of this nucleic acid through the nuclear pore Translation at the ribosomes on the surface of the rER to assemble the protein Transport of the vesicles containing the protein to the Golgi apparatus Modification of the protein at the Golgi apparatus Formation of the Golgi vesicle and its transport to the cell membrane for exocytosis Time is taken to discuss the finer details of this process such as the arrival of the vesicle at the cis face and the transport away from the trans face and the requirement of ATP for the transport of the vesicles along the microtubule track and exocytosis. The remainder of the lesson uses a series of exam-style questions about digestive enzymes (extracellular proteins) to challenge the students on their recall of the structure of starch and proteins