Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The importance of coenzymes (OCR A-level Biology)
GJHeducationGJHeducation

The importance of coenzymes (OCR A-level Biology)

(0)
This clear and concise lesson explores the importance of coenzymes in cellular respiration as detailed in point 5.2.2 (f) of the OCR A-level Biology A specification. Students encountered coenzymes in module 2.1.4 as well as looking at the roles of NAD, CoA and FAD whilst learning about glycolysis, the link reaction and Krebs cycle earlier in this module. Therefore this lesson was designed to check on their understanding of the importance of these roles and goes on to explain how the transport of the protons and electrons to the mitochondrial cristae is key for the production of ATP. This lesson has been written to tie in with the other uploaded lessons in module 5.2.2 which include the mitochondria, glycolysis, the link reaction and the Krebs cycle
Krebs cycle (AQA A-level Biology)
GJHeducationGJHeducation

Krebs cycle (AQA A-level Biology)

(0)
This fully-resourced lesson looks at the series of oxidation-reduction reactions that form the Krebs cycle and focuses on the products in terms of reduced NAD, FAD and ATP. The engaging PowerPoint and accompanying resource have both been designed to cover the fifth part of point 5.2 of the AQA A-level Biology specification. The lesson begins with a version of the Impossible game where students have to spot the connection between 8 of the 9 terms and will ultimately learn that this next stage is called the Krebs cycle. The main part of the lesson challenges the students to use descriptions of the main steps of the cycle to continue their diagram of the reactions. Students are continually exposed to key terminology such as decarboxylation and dehydrogenation and they will learn where carbon dioxide is lost and reduced NAD and FAD are generated. They will also recognise that ATP is synthesised by substrate level phosphorylation. The final task challenges them to apply their knowledge of the cycle to work out the numbers of the different products and to calculate the number of ATP that must be produced in the next stage This lesson has been designed to tie in with the other uploaded lessons on glycolysis, anaerobic respiration, the Link reaction and oxidative phosphorylation.
Link reaction (AQA A-level Biology)
GJHeducationGJHeducation

Link reaction (AQA A-level Biology)

(0)
This clear and concise lesson looks at the role of the Link reaction in the conversion of pyruvate to acetyl coenzyme A which will then enter the Krebs cycle. The PowerPoint has been designed to cover the fourth part of point 5.2 of the AQA A-level Biology specification which states that students should know about this conversion and the production of reduced NAD The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that this stage occurs in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the Link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis and the Krebs cycle and oxidative phosphorylation.
AQA GCSE Combined Science P1 (Energy) REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science P1 (Energy) REVISION

(0)
An engaging lesson presentation (41 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P1 (Energy) of the AQA GCSE Combined Science specification (specification unit P6.1). The topics that are tested within the lesson include: Energy stores and systems Changes in energy Efficiency Students will be engaged through the numerous activities including quiz rounds like “ERRORS with the equation calculations” whilst crucially being able to recognise those areas which need further attention
Pure and impure substances
GJHeducationGJHeducation

Pure and impure substances

(0)
An engaging lesson presentation (39 slides) with associated differentiated worksheets that looks at they key differences between pure and impure substances and briefly explores how a mixture like an alloy can still be very useful. The lesson begins by challenging the students to recognise 4 diagrams of pure substances from a selection of 5. This will lead students to the definition of pure (in Science) which is likely to be different to what they have encountered in everyday language. The next task gets the students to draw a graph showing the melting and boiling points of pure water. This will enable them to compare the melting point against that of an impure substance and therefore recognise that this difference can be used as point to decide on purity. An example of gritting is used to explain how this change in melting point can be utilised and then the students are challenged to apply this new-found knowledge to the situation of adding salt to boiling water when making pasta. The remainder of the lesson focuses on some famous mixtures. Beginning with air, students will be able to visualise how this mixture is made of a number of gases, each with different boiling points which allows them to be separated by fractional distillation. Alloys are briefly explored so that students know why these mixtures are used for certain functions over pure metals and the summary passage for this task has been differentiated two ways so that all can access the work. Progress checks have been written into the lesson at regular intervals so that students can check their understanding and a range of quick quiz competitions are used to maintain engagement whilst introducing new terms in a fun manner. If you want to look into alloys in greater detail, then this lesson could be combined with the one named “alloys” which is also uploaded.
Competitive & non-competitive inhibitors (AQA A-level Biology)
GJHeducationGJHeducation

Competitive & non-competitive inhibitors (AQA A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-controlled reaction. The PowerPoint and accompanying resource are the last in a series of 5 lessons which cover the content detailed in point 1.4.2 of the AQA A-level Biology specification and describes the effect of both competitive and non-competitive inhibitors. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this will get the students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
ATP (AQA A-level Biology)
GJHeducationGJHeducation

ATP (AQA A-level Biology)

(1)
Adenosine triphosphate is the universal energy currency and this lesson focuses on the structure of this nucleotide derivative. The PowerPoint has been designed to cover point 1.6 of the AQA A-level Biology specification and also explains how ATP must be hydrolysed to release energy and then re-synthesised during respiration and photosynthesis. As the previous sub-topic concerned the structure of DNA and RNA, the start of this lesson challenges the students on their knowledge of these polynucleotides so that they can recognise that this molecule consists of adenine, ribose and three phosphate groups. In order to release the stored energy, ATP must be broken down and students will be given time to discuss which reaction will be involved as well as the products of this reaction. Time is taken to describe how the hydrolysis of ATP can be coupled to energy-requiring reactions within cells and the examples of active transport and skeletal muscle contraction are used as these are covered in greater detail in topic 2 and 6. The final part of the lesson considers how ATP must be re-synthesised and students will learn that this occurs in the mitochondria and chloroplast during aerobic respiration and photosynthesis respectively.
Phloem structure (AQA A-level Biology)
GJHeducationGJHeducation

Phloem structure (AQA A-level Biology)

(0)
This engaging lesson describes how the structure of the phloem enables this vascular tissue to transport organic substances in plants. Both the detailed PowerPoint and accompanying resource have been designed to cover the 3rd part of point 3.4.2 (Mass transport in plants) of the AQA A-level Biology specification. Comparative questions between the xylem and phloem are very common so the lesson begins by challenging the students to use their prior knowledge to complete the xylem column of a table with details including the presence of lignin and bordered pits and specific substances which are transported in this tissue. This has been written into the lesson to encourage the students to start to think about how the structure and function of the phloem may compare. 3 quiz rounds have been included in the lesson to maintain motivation and to introduce key terms. The first of these rounds will challenge the students to be the first to recognise descriptions of sucrose and amino acids as they learn that these are the two most common assimilate, which are the substances transported by the phloem. The focus of this lesson is the relationship between structure and function and all descriptions have these two parts highlighted to support the students to recognise the link. Moving forwards, students will be introduced to the sieve tube elements and the companion cells and time is taken to consider why the structure of these cells are so different. Current understanding checks are interspersed throughout the lesson to ensure that any misconceptions can be quickly addressed. The plasmodesmata is described to allow students to understand how assimilates move from the companion cells to the sieve tube elements as this will be particularly important for the next lesson on translocation. The final task of the lesson challenges the students to write a detailed passage about the structure and function of the phloem, incorporating all of the information that they have absorbed throughout the course of the lesson.
OCR Gateway A Combined Science Module P3 REVISION
GJHeducationGJHeducation

OCR Gateway A Combined Science Module P3 REVISION

(1)
An engaging lesson presentation (55 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module P3 (Electricity and Magnetism) of the OCR Gateway A GCSE Combined Science specification. The topics that are tested within the lesson include: Static electricity Current and potential difference Series and parallel circuits Magnets and magnetic fields Motors Students will be engaged through the numerous activities including quiz rounds like “Take the HOTSEAT” whilst crucially being able to recognise those areas which need further attention
Concentration & enzyme activity (AQA A-level Biology)
GJHeducationGJHeducation

Concentration & enzyme activity (AQA A-level Biology)

(0)
This fully-resourced lesson describes how enzyme and substrate concentration can affect the rate of an enzyme-controlled reaction. The PowerPoint and accompanying resources are the 4th in a series of 5 lessons which cover the detail of point 1.4.2 of the AQA A-level Biology specification. Transcription and translation are also introduced and therefore this lesson could be used in preparation for the detailed lessons in topic 4.2. The first part of the lesson describes how an increase in substrate concentration will affect the rate of reaction when a fixed concentration of enzyme is used. Time is taken to introduce limiting factors and students will be challenged to identify substrate concentration as the limiting factor before the maximum rate is achieved and then they are given discussion time to identify the possible factors after this point. A series of exam-style questions are used throughout the lesson and the mark schemes are displayed to allow the students to assess their understanding and for any misconceptions to be immediately addressed. Moving forwards, the students have to use their knowledge of substrate concentration to construct a graph to represent the relationship between enzyme concentration and rate of reaction and they have to explain the different sections of the graph and identify the limiting factors. The final section of the lesson describes how the availability of enzymes is controlled in living organisms. Students will recognise that this availability is the result of enzyme synthesis and enzyme degradation and a number of prior knowledge checks challenge students on their knowledge of proteins as covered in topic 1.4.1 Please note that this lesson explains the Biology behind the effect of concentration on enzyme-controlled reactions and not the methodology involved in carrying out such an investigation as this is covered in a core practical lesson.
Enzymes and temperature (AQA A-level Biology)
GJHeducationGJHeducation

Enzymes and temperature (AQA A-level Biology)

(0)
This lesson describes and explains how increasing the temperature affects the rate of an enzyme-controlled reaction. The PowerPoint and the accompanying resource have been designed to cover the second part of point 1.4.2 of the AQA A-level Biology specification and ties in directly with the previous lesson on the properties of enzymes and their mechanism of action. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these future lessons. Moving forwards, the rest of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and result in an active site that is no longer complementary to the substrate. Key terminology such as denaturation is used throughout. Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of reaction and not the practical skills that would be covered in a core practical lesson
Properties of water (AQA A-level Biology)
GJHeducationGJHeducation

Properties of water (AQA A-level Biology)

(0)
This fully-resourced lesson describes how the different properties of water make this biological molecule incredibly important in Biology. The engaging PowerPoint and accompanying worksheets have been designed to cover point 1.7 of the AQA A-level Biology specification. Hydrolysis reactions have been a recurring theme throughout topic 1, so the start of this lesson challenges the students to recognise the definition when only a single word is shown: water. Students will also recall the meaning of a condensation reaction. Moving forwards, the rest of the lesson focuses on the relationship between the structure and properties of water, beginning with its role as an important solvent. The lesson has been specifically written to make links to future topics and this is exemplified by the transport of water along the xylem in plants. A quick quiz round is used to introduce cohesion and tension so students can understand how the column of water is able to move along this vascular tissue without interruption. The next section focuses on the high latent heat of vaporisation and heat capacity of water and these properties are put into biological context using thermoregulation and the maintenance of a stable environment for aquatic animals. The lesson finishes with an explanation of the polar nature of water, a particularly important property that needs to be well understood for a number of upcoming topics, such as cell membranes.
Disaccharides (AQA A-level Biology)
GJHeducationGJHeducation

Disaccharides (AQA A-level Biology)

(0)
Disaccharides are formed from the condensation of two monosaccharides and this lesson describes the formation of maltose, sucrose and lactose. The PowerPoint and accompanying question sheet have been designed to cover the second part of point 1.2 of the AQA A-level Biology specification but also make links to the previous lesson on monosaccharides when considering the different components of these three disaccharides. The first section of the lesson focuses on a prefix and a suffix so that the students can recognise that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge as they have to describe how condensation reactions and the formation of glycosidic bonds were involved in the synthesis of each one. The main task of the lesson again challenges the students to recall details of a previous lesson as they have to identify the monomers of each disaccharide when presented with the displayed formula. Time is taken to show how their knowledge of these simple sugars will be important in later topics such as digestion, translocation in the phloem and the Lac Operon in the control of gene expression. The lesson finishes with two exam-style questions where students have to demonstrate and apply their newly acquired knowledge
AQA GCSE Science C5 REVISION (Energy changes)
GJHeducationGJHeducation

AQA GCSE Science C5 REVISION (Energy changes)

(0)
An engaging lesson presentation (42 slides) and associated worksheet that uses a combination of exam questions, understanding checks, quick tasks and a quiz competition to help the students to assess their understanding of the topics found within the Chemistry unit C5 (Energy changes) of the AQA GCSE Combined Science specification (specification point C5.5). The lesson includes useful hints and tips to encourage success in assessments. For example, students are shown how to use the energy change in a chemical reaction to work out if it is an endothermic or exothermic reaction. The topics that are tested within the lesson include: Endothermic and exothermic reactions Reaction profiles Calculating energy changes in reactions Students will be engaged through the numerous activities including a summary round called “E NUMBERS” which requires them to use all of their knowledge to work out the type of reactions that are shown.
Limiting reactants and stoichiometry
GJHeducationGJHeducation

Limiting reactants and stoichiometry

(0)
This is a fully-resourced lesson that looks at the meaning of a limiting reactant in a chemical reaction and guides students through how to apply this to a number of calculations. Step by step guides are used to go through worked examples so students are able to visualise how to set out their work. The lesson begins with a fun analogy involving sausages and potatoes so that students can identify that the potatoes limited the sale of food. Alongside this, students will learn the key term excess. Some time is then taken to ensure that students can spot the limiting reactant and the one in excess in actual chemical reactions and method descriptions. Moving forwards, students will be guided through two calculations that involve limiting reactants - those to calculate the theoretical yield and the other to calculate a balanced symbol equation. Other skills involved in these calculations such as calculating the relative formula mass are recalled and a few examples given to ensure they are confident. The question worksheet has been differentiated two ways so that any students who need extra assistance can still access the learning. This lesson has been written for GCSE students.
The pH scale
GJHeducationGJHeducation

The pH scale

(0)
A fast-paced lesson that looks at the key details of the different substances which are found along the pH scale. This lesson has been designed for GCSE students and to build on the foundation knowledge that they picked up at KS3. Along with the obvious Scientific knowledge associated with the lesson, both numeracy and literacy skills are challenged during the lesson. Time is taken to ensure that the meaning of pH is understood and new terms such as base are introduced, so that these are recognised when written in assessment questions. Students will recall the scale numbers associated with acidic, neutral and alkaline solutions and their knowledge will be extended through the introduction of hydrogen and hydroxide ions. A method for taking a pH reading using a pH probe is included which can be used should the teacher chose that it is required. Progress checks are written into the lesson at regular intervals so that students can constantly assess their understanding.
Surface area and the rate of reaction
GJHeducationGJHeducation

Surface area and the rate of reaction

(0)
This is a fast-paced lesson that looks at how particle size affects the rate of reaction and challenges the students to carry out a practical to obtain valid results to back up the theory. It is a fully-resourced lesson that consists of an engaging lesson presentation (19 slides) and a calculation worksheet which is differentiated two ways to enable those students who find the maths hard to have a way to access the learning. Students are guided through a method of calculating the surface area and volume of the object and calculating the surface area to volume ratio. Using the answers to their calculations, they will complete a summary passage which explains why having more exposed reacting particles leads to an increased rate of reaction. Students will then carry out a practical where they have to determine which cube of jelly to use to make jelly the fastest in order to test their summary passage is valid. This lesson has been designed for GCSE students but could be used with younger students looking at chemical reactions and investigating the factors that affect the rate.
Key concepts in Physics REVISION (Edexcel GCSE Physics)
GJHeducationGJHeducation

Key concepts in Physics REVISION (Edexcel GCSE Physics)

(0)
This fully-resourced revision lesson consists of an engaging PowerPoint and differentiated resources which together challenge the students on their knowledge of the Key concepts in Physics, which are detailed in topic 1 of the Pearson Edexcel GCSE Physics specification . The content in this topic is particularly important because it will be assessed in both paper 1 and paper 2 of the terminal exams. The lesson has been filled with a wide range of activities which test the following specification points: Recall and use the SI units for physical quantities Recall and use multiples and sub-multiples of units Be able to convert between different units Use significant figures and standard form# To fall in line with the heavy mathematical content of this specification, the main task of the lesson challenges the students to carry out a range of calculations where they have to convert between units and leave their answers in a specific form.
Catalysts and the rate of reaction
GJHeducationGJHeducation

Catalysts and the rate of reaction

(0)
A concise lesson presentation (22 slides) that looks at how catalysts affect the rate of a chemical reaction and focuses on the Science behind this topic. The lesson begins with the introduction of the key term and its definition to ensure that students are confident in the use of a catalyst in the correct context. More key terms like “activation energy” are introduced and links made to related Chemistry topics such as endothermic and exothermic reactions. Students are challenged to show how the activation energy will differ in the presence of a catalyst. The rest of the lesson involves a practical and the collection of results so that students can compare their data against the theory which was introduced earlier in the lesson. This lesson has been designed for GCSE students.
Fractional distillation of crude oil
GJHeducationGJHeducation

Fractional distillation of crude oil

(0)
An engaging lesson presentation (46 slides) which looks at the fractional distillation of crude oil and focuses on the properties of the different fractions. The aim at the start of the lesson is to ensure that students understand that this process can be broken down into evaporation followed by condensation. Moving forwards, a fun competition is used to introduce the students to the names of some of the important fractions that are produced by this process. At the same time, they will learn the relative position that each fraction condenses on the fractionating column and will be taught that they need to know this position with relation to the other fractions. Students will learn that the fractions have differing properties depending on where they condense and they are challenged to compare fractions by viscosity, length of hydrocarbon and boiling point. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students.