Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Weight and gravitational field strength
GJHeducationGJHeducation

Weight and gravitational field strength

(0)
A fast-paced lesson that looks at weight and how this differs on different planets depending upon the gravitational field strength. At the start of the lesson, the students are shown the equation to calculate gravity force and weight and are challenged to spot a difference (if there is one)! Time is then taken to explain how weight is the term used when a mass comes into the gravitational field of the Earth (or other planets). A quick understanding check, with the gravitational field strength Olympics, is used to see whether students can calculate this field and their mathematical skills are tested with a number of conversions needed to do so. Moving forwards, students are shown a number of masses and weights on the Earth and the Moon so they can see how mass does not change but weight will be different. The final task challenges them to apply their new-found knowledge to calculate their mass on the Earth, the Moon and Jupiter. This lesson has been designed for GCSE students but it is suitable for KS3 students who are exploring the Universe topic.
Atom economy
GJHeducationGJHeducation

Atom economy

(0)
This is a concise, fast-paced lesson which guides students through the critical skills needed to calculate the atom economy of a chemical reaction. It has been designed for GCSE students and focuses on the calculation as well as interpreting the final value. In order to calculate the mass of the desired product and other products, students have to be able to calculate the relative formula mass - therefore time is taken to revisit these skills and worked examples are used with this and the actual calculations to enable the students to visualise how they should set their work out. The lesson finishes with some progress check questions where students are challenged to state which of four chemical reactions has the highest atom economy. This lesson could be taught in combination with the percentage yield topic and an accompanying lesson on that calculation is available on this site.
Cardiac cycle (CIE International A-level Biology)
GJHeducationGJHeducation

Cardiac cycle (CIE International A-level Biology)

(0)
This detailed lesson describes and explains the blood pressure changes that occur during systole and diastole of the cardiac cycle. The PowerPoint and accompanying resource have been designed to cover point 8.2 © of the CIE International A-level Biology specification. The start of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by diastole. Students are challenged on their prior knowledge of the structure of the heart as they have to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the rest of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. The final part of the lesson covers the changes in the volume of the ventricle. This lesson has been written to tie in with the other uploaded lessons on the heart as detailed in topic 8.2
Particle model of matter REVISION (AQA GCSE Physics Topic 3)
GJHeducationGJHeducation

Particle model of matter REVISION (AQA GCSE Physics Topic 3)

(0)
This fully-resourced revision lesson challenges the students on their knowledge of the content detailed in topic 3 (Particle model of matter) of the AQA GCSE Physics specification. The wide range of activities which include exam questions with clear explanations will allow them to assess their understanding of the content and to recognise those areas which require further attention. The lesson has been designed to cover as much of the topic as possible but the following specification points have been given particular attention: Recall and apply the equation to calculate density Explaining differences in density between states of matter Internal energy and the result of heating the particles in a system Applying the equation to calculate the specific heat capacity Understanding that temperature does not change during changes of state Applying the equation to calculate the specific latent heat Explaining the qualitative relationship between the temperature of a gas and its pressure Applying the equation that links pressure, volume and a constant The engaging PowerPoint guides students on the use of key mathematical skills to aid success with the various calculations
Monomers, polymers, condensation & hydrolysis reactions (OCR A-level Biology)
GJHeducationGJHeducation

Monomers, polymers, condensation & hydrolysis reactions (OCR A-level Biology)

(0)
This lesson introduces the concept of monomers and polymers and emphasises the importance of condensation and hydrolysis reactions for biological molecules. The PowerPoint and accompanying worksheet have been designed to cover specification point 2.1.2 (b) of the OCR A-level Biology A course, and as this is likely to be one of the very first lessons that the students encounter, the range of engaging tasks have been specifically designed to increase the likelihood of the key points and fundamentals being retained. Monomers were previously met at GCSE and so the beginning of the lesson focuses on the recall of the meaning of this key term before the first in a series of quiz rounds is used to introduce nucleotides, amino acids and monosaccharides as a few of the examples that will be met in this topic. Dipeptides and disaccharides are introduced as structures containing 2 amino acids or sugars respectively and this is used to initiate a discussion about how monomers need to be linked together even more times to make the larger chains known as polymers. At this point in the lesson, the students are challenged to recall the definition of a condensation reaction from the previous lesson on water and are then challenged to identify where the molecule of water is eliminated from when two molecules of glucose join. A series of important prefixes and suffixes are then provided and students use these to remind themselves of the details of a hydrolysis reaction. Links to upcoming lessons are made throughout the PowerPoint to encourage students to begin to recognise the importance of making connections between topics.
CIE IGCSE Chemistry Topic 2 REVISION (Experimental techniques)
GJHeducationGJHeducation

CIE IGCSE Chemistry Topic 2 REVISION (Experimental techniques)

(0)
This revision resource includes exam questions, understanding checks and quiz competitions, all of which have been designed to motivate and engage the students whilst they assess their understanding of the content found in topic 2 (Experimental techniques) of the CIE IGCSE Chemistry specification for examination in June and November 2020 and 2021. This revision resource contains an engaging PowerPoint (50 slides) and associated worksheets, some of which have been differentiated to help and challenge differing abilities. The range of activities have been designed to cover as much of the Core and Supplement content as possible but the following sub-topics have been given particular attention: Identify substances and assess purity from melting and boiling point data Describe and explain the method of distillation Understand how fractional distillation separates mixtures according to their boiling points Describe and explain the method of crystallisation Demonstrate knowledge and understanding of paper chromatography Interpret simple chromatograms, including the calculation of the Rf values In addition, topics from other modules such as states of matter at different temperatures are covered so that students can see the importance of being able to make connections and links between Chemistry topics.
Sex-linkage (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Sex-linkage (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the inheritance of genes with loci on the X chromosomes and considers biological examples. The detailed PowerPoint and accompanying resources have been designed to cover point 2.15 (ii) of the Edexcel International A-level specification and focuses on the inheritance of red-green colour blindness and haemophilia in humans Key genetic terminology is used throughout and the lesson begins with a check on their ability to identify the definition of homologous chromosomes. Students will recall that the sex chromosomes are not fully homologous and that the smaller Y chromosome lacks some of the genes that are found on the X. This leads into one of the numerous discussion points, where students are encouraged to consider whether females or males are more likely to suffer from sex-linked diseases. In terms of humans, the lesson focuses on haemophilia and red-green colour blindness and a step-by-step guide is used to demonstrate how these specific genetic diagrams should be constructed and how the phenotypes should then be interpreted. The final task of the lesson challenge the students to apply their knowledge to an exam question about chickens and how the rate of feather production in chicks can be used to determine gender. All of the tasks are differentiated so that students of differing abilities can access the work and all exam questions have fully-explained, visual mark schemes to allow them to assess their progress and address any misconceptions
Chromosome mutations (OCR A-level Biology)
GJHeducationGJHeducation

Chromosome mutations (OCR A-level Biology)

(0)
This fully-resourced lesson explores the contributions of chromosome mutations to genetic variation. The engaging PowerPoint and accompanying worksheets have been designed and written to cover the part of point 6.1.2 (a) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the contribution of genetic factors to phenotypic variation Over the course of the lesson, students will encounter a number of chromosome mutations and see the conditions which they cause. Time is taken to look at non-disjunction and how this can result in Down, Turner’s and Klinefelter’s syndromes. Students are guided through a description of the formation of gametes and zygotes with abnormal numbers of chromosomes before being challenged to describe the formation of a zygote with Turner’s syndrome. Moving forwards, translocation and polyploidy are also discussed. Progress checks are written into the lesson at regular intervals, that not only check the learning from this lesson but also from related topics (such as meiosis) and this enables the students to constantly assess their understanding.
The control of HEART RATE (OCR A-level Biology)
GJHeducationGJHeducation

The control of HEART RATE (OCR A-level Biology)

(0)
This fully-resourced lesson looks at the effects of nervous mechanisms on the heart rate. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the part of point 5.1.5 (k) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the control of the heart rate by the cardiovascular centre in the medulla oblongata This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work
Addition polymerisation
GJHeducationGJHeducation

Addition polymerisation

(0)
This is a concise, fast-paced lesson that introduces students to addition polymers and guides them through drawing displayed formulae to represent both the monomers and polymers involved in these reactions. Students will learn the conditions needed for these reactions and that the polymers produced by addition reactions are the only products. The main part of the lesson involves a step by step guide to show students how to draw displayed formulae. Hints are given throughout the process so that students can remember the key ideas and are able to represent these substances accurately. A number of progress checks have been written into the lesson so that students can assess their understanding any misconceptions can be addressed. This lesson has been written for GCSE students
Electrical circuit symbols
GJHeducationGJHeducation

Electrical circuit symbols

(0)
This is a fun and engaging lesson that uses a range of quick competitions and tasks to ensure that the students recognisethe electrical symbols for the essential components and can describe the functions for each of these. Competitions such as SNAP and SAY WHAT YOU SEE will introduce the students to the components and their symbols. This lesson has been written for GCSE students and looks to build on what they should know from KS3 - however, it could be used with higher ability students at that level.
Blood clotting (GCSE)
GJHeducationGJHeducation

Blood clotting (GCSE)

(0)
A resourced lesson which uses a concise lesson presentation (18 slides) and a differentiated diagram to guide students through the method of blood clotting. This lesson has been designed for students studying GCSE (14 - 16 year olds in the UK) and this is reflected in the appropriate detail where only the involvement of fibrin needs to be known. Students are shown how blood clotting is a cascade effect where one event leads on to the next.
STEM CELLS
GJHeducationGJHeducation

STEM CELLS

(0)
An engaging lesson presentation which looks at the two types of animal stem cells, exploring their important differences and briefly looking at their potential uses in medicine. The lesson begins by looking at the meaning of the term differentiation and then challenging students to draw a simple conclusion once they know that stems cells are undifferentiated cells. Time is taken to look into this part of the knowledge in depth but then students are given the key points which must be understood for them to move forwards. Students are told that there are two types of animal stem cells before a quiz competition is used to get them to predict which one of the two is being described by the clues. The answers to the competition then have to be used to write a summary passage about the two types. Students are also told that stem cells exist in plants in the form of meristem cells. Finally, Parkinson’s disease and Diabetes mellitus Type I are used as examples of conditions that could be potentially treated with stem cells.
The mammalian heart (OCR A-level Biology)
GJHeducationGJHeducation

The mammalian heart (OCR A-level Biology)

(0)
This fully-resourced lesson looks at the internal and external structure of the mammalian heart and uses the human heart to represent this anatomy. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 3.1.2 (e) (i) of the OCR A-level Biology A specification As this topic was covered at GCSE, the lesson has been planned to build on this prior knowledge whilst adding the key details which will enable students to provide A-level standard answers. The primary focus is the identification of the different structures of the heart but it also challenges their ability to recognise the important relationship to function. For example, time is taken to ensure that students can explain why the atrial walls are thinner than the ventricular walls and why the right ventricle has a thinner wall than the left ventricle. Opportunities are taken throughout the lesson to link this topic to the others found in topic 3.1.2 including those which have already been covered like circulatory systems as well as those which are upcoming such as the initiation of heart action. There is also an application question where students have to explain why a hole in the ventricular septum would need to be repaired if it doesn’t naturally close over time.
Triglycerides (OCR A-level Biology)
GJHeducationGJHeducation

Triglycerides (OCR A-level Biology)

(0)
This fully-resourced lesson describes the relationship between the structure, properties and functions of triglycerides in living organisms. The engaging PowerPoint and accompanying worksheets have been designed to be the first lesson in a series of two that cover specification points 2.1.2 (h), (i) & (j) of the OCR A-level Biology A course and the lesson contains numerous references to relevant future topics such as the importance of the myelin sheath for the conduction of an electrical impulse. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from earlier in the sub-module so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of a triglyceride mean that it has numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
Synthesis and breakdown of disaccharides (OCR A-level Biology)
GJHeducationGJHeducation

Synthesis and breakdown of disaccharides (OCR A-level Biology)

(0)
This lesson describes how disaccharides like maltose, sucrose and lactose are formed from the condensation of two monosaccharides and can also be broken down by hydrolysis reactions. The PowerPoint and accompanying question sheet have been designed to cover specification point 2.1.2 (e) of the OCR A-level Biology A specification but also makes repeated links to the previous lesson on monosaccharides when considering the different components of these three disaccharides. The first section of the lesson focuses on a prefix and a suffix so that the students can recognise that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge as they have to describe how condensation reactions and the formation of glycosidic bonds were involved in the synthesis of each one. The main task of the lesson again challenges the students to recall details of a previous lesson as they have to identify the monomers of each disaccharide when presented with the displayed formula. Time is taken to show how their knowledge of these simple sugars will be important in later topics such as extracellular enzymes, translocation in the phloem and the Lac Operon in cellular control. The lesson finishes with two exam-style questions where students have to demonstrate and apply their newly acquired knowledge when presented with unfamiliar disaccharides
Amplifying DNA using the PCR (Edexcel A-level Biology A)
GJHeducationGJHeducation

Amplifying DNA using the PCR (Edexcel A-level Biology A)

(0)
This lesson describes how the polymerase chain reaction (PCR) is used to amplify DNA. The concise PowerPoint has been primarily designed to cover the detail of specification point 6.4 of the Pearson Edexcel A-level Biology A specification but also makes continual links to the previous lesson on DNA profiling where the PCR is important as well as DNA structure. A quick quiz competition is used to introduce the PCR abbreviation before students are encouraged to discuss with the aim of identifying the enzyme involved and to recall the action of this enzyme as covered in DNA replication in topic 2. Students will learn that this reaction involves cyclical heating and cooling to a range of temperatures so another quiz is used to introduce these values. The main part of the lesson describes the main steps in the PCR and the reasons for each temperature is discussed and explained. Links are constantly made to related topics such as DNA structure are students are challenged on their understanding through exam-style questions. Time is taken to examine the key points in detail, such as the fact that the DNA polymerase used is taken from an extremophile so that it is not denatured at the high temperature.
Structure and action of phagocytes (OCR A-level Biology)
GJHeducationGJHeducation

Structure and action of phagocytes (OCR A-level Biology)

(0)
This lesson describes the structure and mode of action of phagocytes and focuses on the neutrophils and macrophages as APCs. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 4.1.1 (e) [i] of the OCR A-level Biology A specification and also includes an introduction to antigen-presentation so that the students are prepared for the next lesson on the specific immune response At the start of the lesson, the students are challenged to recall that cytosis is a suffix associated with transport mechanisms and this introduces phagocytosis as a form of endocytosis which takes in pathogens and foreign particles. This emphasis on key terminology runs throughout the course of the lesson and students are encouraged to consider how the start or end of a word can be used to determine meaning. The process of phagocytosis is then split into 5 key steps and time is taken to discuss the role of opsonins as well as the fusion of lysosomes and the release of lysozymes. A series of application questions are used to challenge the students on their ability to make links to related topics including an understanding of how the hydrolysis of the peptidoglycan wall of a bacteria results in lysis. Students will be able to distinguish between neutrophils and monocytes from a diagram and at this point, the role of macrophages and dendritic cells as antigen-presenting cells is described so that it can be used in the next lesson. The lesson concludes with a brief introduction to lymphocytes so that initial links between phagocytosis and the specific immune response is made.
Ultrastructure of prokaryotic cells (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Ultrastructure of prokaryotic cells (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the ultrastructure of a prokaryotic cell and the function of the structures found in these cells. The engaging PowerPoint and accompanying resources have been designed to cover specification point 3.5 (i) & (ii) as detailed in the Edexcel International A-level Biology specification and also compares these cells against the eukaryotic cells that were met in the previous lesson. A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to recognise a prefix that they believe translates as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus and this acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce
Asexual reproduction
GJHeducationGJHeducation

Asexual reproduction

(0)
An engaging lesson presentation (33 slides) that looks at the key details of asexual reproduction, examines the process in bacteria and plants and also considers the advantages and disadvantages. The lesson begins by challenging the students to discuss whether reproduction always requires two (parents). Students will see how only one parent is involved in this type of reproduction and will focus on how it takes place in bacteria. Moving forwards, students will be introduced to the methods of runners, bulbs and tubers in plants. By making connections to natural selection, students will be challenged to think about the benefits of asexual reproduction. There are regular progress checks throughout the lesson so that students can assess their understanding. This lesson is suitable for both KS3 and GCSE students