Hero image

GJHeducation's Shop

Average Rating4.50
(based on 910 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1165k+Views

1973k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Calculating cardiac output (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Calculating cardiac output (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes the meaning of the terms stroke volume and heart rate and explains how to use them to calculate the cardiac output. The PowerPoint and accompanying resources have been designed to cover the content of specification point 8.12 of the Edexcel GCSE Biology & Combined Science specifications. The lesson begins by challenging the students to use their knowledge of the structure of the heart chambers to identify the one which has the most muscular wall. Their discussions should lead to the left ventricle and following the introduction of the key term stroke volume using a quick quiz competition, they will learn that this factor is the volume of blood pumped out of the left ventricle each heart beat. Another competition introduces the normative values for stroke volume and the resting heart rate and then the students are challenged to use the provided equation to calculate the cardiac output and to write a definition for this factor using their current understanding. The remainder of the lesson considers how these three factors change during exercise and they are challenged to apply their understanding through a series of exam questions. This worksheet is differentiated two ways and the mark scheme is embedded into the PowerPoint to allow the students to assess their progress.
Meiosis (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Meiosis (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes the role of meiotic cell division, including a detailed explanation of how 4 genetically unidentical daughter cells are formed. The PowerPoint and accompanying resources have been designed to cover point 3.3 of the Edexcel GCSE Biology and Combined Science specifications. The students covered the mitotic cell cycle in topic 2 and their knowledge of this type of cell division is utilised throughout the lesson to help with the understanding of this cycle. The lesson begins by challenging the students to recall the meaning of diploid and they will learn that the parent cell at the start of the meiotic cell cycle is a diploid cell. Time is taken to remind them of the events of interphase and then the lessons focuses on the 2 sets of division in meiosis which produces four haploid daughter cells. The identity of these cells as gametes is emphasised. The final part of the lesson uses a series of exam questions to challenge the students on their understanding of the cycle and the mark schemes are embedded into the PowerPoint to allow the students to assess their progress.
Surface area to volume ratio (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Surface area to volume ratio (Edexcel GCSE Biology & Combined Science)

(0)
This lesson uses step by step guides to describe how to calculate the surface area to volume ratio. The PowerPoint and accompanying resources are part of the first lesson in a series of 2 lessons which have been designed to cover the detail of points 8.2 and 8.3 of the Edexcel GCSE Biology & Combined Science specifications. The calculation of the SA/V ratio can be an area of the course that students find difficult so this lesson breaks the calculation into parts to guide them through each step. The students are shown how to calculate the surface area, then the volume and then how to express the answer of the division calculation as a ratio against 1. After each step, the students are given the opportunity to apply their understanding and all questions have mark schemes with full workings embedded into the PowerPoint to allow the students to self-assess. Students also tend to struggle to see the relevance to Biology so the remainder of the lesson involves the calculation of the ratio for the alveoli in the human body. Students will discover that the surface area to volume ratio is significantly increased in these gas exchange surfaces which leads into the upcoming lesson on the adaptations of the alveoli to overcome the overall low ratio in larger organisms.
Combustion of hydrocarbons (AQA GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Combustion of hydrocarbons (AQA GCSE Chemistry & Combined Science)

(0)
This lesson explains how the complete combustion of hydrocarbons produces carbon dioxide and water and explains how write equations to represent these reactions. The PowerPoint and accompanying resources are part of the second lesson in a series of 2 which have been designed to cover the detail in point 7.1.3 of the AQA GCSE Chemistry & Combined Science specifications. As shown in the cover picture, the lesson starts with a challenge where the students have to recognise the key term combustion from its suffix and a brief definition. Moving forwards, students will discover that the combustion of hydrocarbons releases energy and during this reaction, the carbon and hydrogen are oxidised. Time is taken to emphasise that sufficient oxygen needs to be present for complete combustion to occur and that if the supply is plentiful then carbon dioxide and water will be produced. The main part of the lesson uses a step by step guide to show students how to write word equations and balanced symbol equations for these reactions, before they are challenged to apply their understanding to write their own. All of the exam questions have mark schemes embedded into the PowerPoint to allow the students to self-assess. The final part of the lesson uses an internet article about carbon monoxide poisoning to introduce that this toxic gas can be produced when oxygen is insufficient.
Size and mass of atoms (AQA GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Size and mass of atoms (AQA GCSE Chemistry & Combined Science)

(0)
This lesson describes the size and mass of atoms and describes the relative mass and electrical charge of the subatomic particles. The PowerPoint and accompanying resources are part of the first lesson in a series of 3 that has been designed to cover specification points 1.1.4 - 1.1.6 of the AQA GCSE Chemistry & Combined Science specifications. The lesson begins by introducing giga as a prefix of size and this leads into a task where the students have to order the other prefixes from largest to smallest. This introduces the nanometre and students will learn the size of the radius of an atom is 0.1nm. Time is taken to compare this size against that of a football and a human egg cell to try to put this atom radius into context. Moving forwards, the term “subatomic particles” is introduced and the students are challenged to recall the names of the three types along with their location within the atom from their lessons on the development of the atomic model earlier in topic 1. They are told that most of atom’s mass is in the nucleus and therefore can work out the protons and neutrons have much higher relative masses than electrons. They will also learn the relative electrical charges of the particles and are challenged to use this to state the overall charge of an atom and the nucleus. There is a considerable amount of Maths written into this lesson including the use of standard form and conversion between units and step by step guides are used to support the students with this work
Genetic inheritance (AQA GCSE Biology)
GJHeducationGJHeducation

Genetic inheritance (AQA GCSE Biology)

(0)
This lesson explains the meaning of 11 key terms associated with the genetic inheritance topic and challenges the students to use them in context. The PowerPoint and accompanying resources have been designed to cover point 6.1.6 of the AQA GCSE Biology specification and include explanations of genome, chromosome, gene, allele, genotype, homozygous, heterozygous, phenotype, dominant, recessive and gamete. The key term, genome, was met earlier in topic 6 so the lesson begins with a knowledge retrieval with the definition for this term. As the genome is the entire DNA of an organism, the next task challenges the students to identify three errors in a passage about DNA. This leads into discussions about chromosomes and genes and time is taken to explain that homologous chromosomes have the same genes at the exact same gene loci. The students will learn that alternative forms of the gene (alleles) can be found at these loci and that these structures explain the differences in inherited characteristics. Moving forwards, the main section of the lesson describes the link between the dominant and recessive alleles, homozygous and heterozygous genotypes, and the physical expression as the phenotype. The final key term is gamete, and the students are challenged to recognise a definition for this term using their knowledge of meiosis. Two progress and understanding checks complete the lesson and check on the students’ ability to recognise and write definitions for these 11 terms and to use them accurately in a written description
Investigating the distribution and abundance of organisms (OCR GCSE Biology)
GJHeducationGJHeducation

Investigating the distribution and abundance of organisms (OCR GCSE Biology)

(0)
This lesson describes how to investigate the distribution and abundance of organisms and how to estimate the numbers of a species in a habitat. The PowerPoint and accompanying resources are part of the first lesson in a series of two lessons which have been designed to cover the details of point B6.1a of the OCR GCSE Biology specification. This first lesson focuses on the use of a quadrat to estimate population size as well as belt transects to consider distribution. Step by step guides are used throughout the lesson to model the workings required in the calculations. This includes the use of a 1 metre squared quadrat as well as other areas. Once a method has been modelled, the students are challenged with a series of exam questions and mark schemes are embedded into the PowerPoint to allow the students to self-assess.
Organisation of the nervous system (AQA GCSE Psychology)
GJHeducationGJHeducation

Organisation of the nervous system (AQA GCSE Psychology)

(0)
This lesson focuses on the organisation of the nervous system into the CNS and the several divisions of the PNS. The PowerPoint and accompanying resource are part of the 1st lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. This lesson has been designed to act as an introduction to the topic to allow students to understand how the brain and spinal cord (as part of the CNS) and the SNS and ANS (as part of the PNS) fit into the organisation of the system. The functions of each part are briefly introduced to give an understanding that can then be built upon in future lessons in the topic. The students will learn that the main part of the brain is the cerebrum and that this organ is divided into hemispheres. They’ll learn that the brain is connected to the other part of the CNS, the spinal cord, by the brain stem, and that these nerves are responsible for conducting impulses between the brain and the rest of the body. The differences between the somatic and autonomic nervous systems are introduced before a worksheet task challenges the students to recognise which responses are brought about by the SNS and which by the ANS. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The somatic nervous system #9 The autonomic nervous system #10 The fight or flight response #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
Sensory and motor neurones (AQA GCSE Psychology)
GJHeducationGJHeducation

Sensory and motor neurones (AQA GCSE Psychology)

(0)
This lesson describes the structure and function of the sensory and motor neurones. The PowerPoint and accompanying resources are part of the 4th lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. This lesson focuses on the functions and the structural similarities and differences between a sensory and motor neurone. Students will be introduced to key structures like the cell body, axon and dendrites and learn how they differ in these two peripheral nervous system neurones. They will also learn about the myelin sheath and will be challenged to use a data table to recognise that myelinated neurones conduct impulses faster than unmyelinated neurones. There is a brief explanation about the jumping action of the impulse between the nodes of Ranvier to enable this faster conduction. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The somatic nervous system #9 The autonomic nervous system #10 The fight or flight response #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
Mitosis and Meiosis REVISION (AQA GCSE)
GJHeducationGJHeducation

Mitosis and Meiosis REVISION (AQA GCSE)

(0)
Students commonly confuse the two forms of cell division, so this revision lesson has been designed to address those mistakes and misconceptions. The PowerPoint and accompanying resources have been planned to challenge the students on their understanding of the details of points 1.2.1, 1.2.2 and 6.1.2 of the AQA GCSE biology and combined science specifications. The lesson goes through each of the three stages of the cell cycle including mitosis, to ensure that students can describe the key events and state the outcome in terms of the daughter cells. The lesson contains a series of tasks which include exam questions, discussions and a quiz which allow the students to assess their understanding. The final part of the lesson focuses on meiosis and specifically the differences to mitosis in terms of the number of cell divisions, the gametes formed, and their genetic make up. This lesson has been designed to be used for revision purposes in the lead up to the GCSE exams or in preparation for an end of topic test or mocks.
AQA GCSE Combined Physics FINAL REVISION
GJHeducationGJHeducation

AQA GCSE Combined Physics FINAL REVISION

(0)
This lesson covers a large number of the key topics from the AQA GCSE Combined Physics course in the final weeks before the GCSE examinations. The extensive PowerPoint and accompanying resources use a range of activities and tasks including exam questions and quizzes to challenge the students on their knowledge of the following topics and skills: Units and converting between units Answering calculation questions (with 1 or 2 equations) Newton’s 2nd and 3rd laws of motion Resultant forces Conservation of energy Efficiency and reducing wasted energy Conservation of momentum Scalar and vector quantities Motions on a velocity-time graph The relationship between force and the extension of a spring Setting up electrical circuits Current, potential difference and resistance in series and parallel circuits The properties of ionising radiation Calculating half-lives Constructing decay equations The properties of waves Refraction This resource is likely to take 4 or more lessons to cover all of the content.
Radiation REVISION (AQA GCSE)
GJHeducationGJHeducation

Radiation REVISION (AQA GCSE)

(0)
This engaging revision lesson uses a range of tasks to allow students to check their understanding of radioactive decay and nuclear radiation. The PowerPoint and accompanying resources have been designed to challenge the detail of point 4.2 of the AQA GCSE physics and combined science specifications and the following sub-topics are covered: Properties of alpha, beta and gamma Bq as the unit of radioactivity Detecting sources of radiation based on their penetrating power Half-life Decay equations Changes to the mass and charge of the nucleus after decay
Control of blood glucose REVISION (GCSE)
GJHeducationGJHeducation

Control of blood glucose REVISION (GCSE)

(0)
This engaging revision lesson challenges students on their understanding of the homeostatic control system that regulates blood glucose concentration. The PowerPoint and accompanying resources have been designed to check on the understanding of the details in specification point 5.3.2 of the AQA biology and combined science specifications. A common mistake in this topic is that students confuse glycogen with glucagon and use them incorrectly so time is spent to ensure that students recognise the difference between the complex carbohydrate and the hormone. In addition to challenging the students on their knowledge of this control system, the following linked topics are also challenged: key biological terms (beginning with G) the digestive system structures in a control system
Reactions of acids with metals REVISION (AQA GCSE)
GJHeducationGJHeducation

Reactions of acids with metals REVISION (AQA GCSE)

(0)
This detailed revision lesson challenges the students on their understanding of the reactions of acids with metals to produce salts and hydrogen. The PowerPoint and accompanying resources focus on the details of point 4.2.1 in the AQA GCSE chemistry and combined specifications, and time is spent reminding the students that these reactions are redox reactions. The students are given the general word equation for acids reacting with metals and are challenged to recall how to name the salts according to the metal and acid involved in the reaction. They are reminded that redox reactions involve the loss and gain of electrons and are challenged to identify the substances which are reduced or oxidised in specific examples. In addition to the reactions of acids with metals, this revision lesson also challenges them to write chemical formulae, balance symbol equations, and to identify the tests for gases.
DNA methylation & acetylation (AQA A-level biology)
GJHeducationGJHeducation

DNA methylation & acetylation (AQA A-level biology)

(0)
This lesson describes how epigenetics, in the form of increased DNA methylation and decreased histone acetylation, controls gene expression. The PowerPoint and accompanying resources are part of the second lesson in a series of 4 which cover the content of point 8.2.2 (regulation of transcription and translation) of the AQA A-level biology specification. As shown in the cover image, the lesson begins with a challenge, where the students have to recognise the prefix epi. They will learn that this prefix means on or above in Greek meaning epigenetics can be described as factors causing changes to gene function beyond the genetic code. One of several discussion periods is used to encourage them to identify what is not involved here (i.e. gene mutations), and so, epigenetics is introduced as heritable changes in gene function without changes to the base sequence. Moving forwards, the process of DNA methylation is introduced, and students are challenged to predict how the addition of a methyl group could inhibit transcription before they have to use their prior knowledge of key terms to complete a passage about this concept. The details of a study which considered the correlation between DNA methylation and atherosclerosis are provided to broaden their knowledge and then they have to answer questions about the study using their knowledge of content from topics 1 - 7. The remainder of the lesson discusses acetylation and students will learn that the removal of acetyl groups from histones causes the chromatin to become highly condensed and prevents the transcription of the gene.
Epigenetic modification (Edexcel A-level biology B)
GJHeducationGJHeducation

Epigenetic modification (Edexcel A-level biology B)

(0)
This detailed lesson describes how gene expression can be changed by epigenetic modification, which is important in ensuring cell differentiation. The PowerPoint and accompanying resources describe DNA methylation, histone modification, and non-coding RNA as methods of modification and are part of the final lesson in a series of 3 lessons that cover the content in point 7.2 of the Edexcel A-level biology B specification (Factors affecting gene expression). HIV, atherosclerosis and cystic fibrosis are included in the lesson to demonstrate the application of this control of gene expression in real biological examples. Students are challenged throughout the lesson on their current understanding as well as their knowledge of previously covered topics which have links and the answers are embedded into the PowerPoint to allow them to assess their progress. The other lessons in this series are uploaded and are titled “transcription factors” and “RNA splicing”.
AQA A-level biology topic 6 REVISION
GJHeducationGJHeducation

AQA A-level biology topic 6 REVISION

(0)
This revision lesson provides students with the opportunity to assess their understanding of the AQA A-level biology topic 6 content. The lesson includes a multiple-choice assessment of 20 questions which have been written to challenge the content of topic 6 (Organisms respond to changes in their internal and external environments) and a PowerPoint where the answers are revealed, along with explanations and key points related directly to the specification. The PowerPoint also includes other questions about topic 6 that aren’t directly challenged in the 20 questions, as well as prior knowledge checks to encourage the students to make links to content from topics 1 - 5. This resource has been designed to be used at the end of the teaching of topic 6 and/or in the build up to the final A-level assessments. Lessons challenging content from the other 7 specification topics are also uploaded.
AQA A-level biology TOPIC 1 REVISION
GJHeducationGJHeducation

AQA A-level biology TOPIC 1 REVISION

(0)
This lesson has been designed to provide students with the opportunity to assess their understanding of topic 1 of the AQA A-level biology specification. Included in the lesson is an assessment consisting of 20 multiple choice questions and a PowerPoint containing the answers. The PowerPoint also contains explanations and key points related to the specification, as well as additional knowledge checks to challenge the content which isn’t directly covered by the 20 questions. There are also slides titled “Link to the future” where content is linked to upcoming lessons from topics 2 - 8. This lesson has been planned to be used at the end of topic 1, and/or in the build up to the final A-level assessments. Multiple-choice assessments for the other 7 topics are also uploaded.
Topic 16 REVISION (CIE A-level biology)
GJHeducationGJHeducation

Topic 16 REVISION (CIE A-level biology)

(0)
This revision lesson provides students with the opportunity to assess their understanding of inheritance (topic 16). The lesson includes a multiple-choice assessment of 10 questions and a PowerPoint containing the answers, where each answer slide shows the exact specification code to enable students to note the areas which may require extra attention. The PowerPoint also contains additional questions to challenge content from topic 16 of the CIE A-level biology specification (2025 - 2027 update) that isn’t directly covered by the 10 questions, and prior knowledge checks to encourage students to make links to content from topics 1 - 15. This lesson has been designed to be used at the end of topic 16, and in the build up to mocks and the final A-level assessments.
Topic 2 REVISION (CIE A-level biology)
GJHeducationGJHeducation

Topic 2 REVISION (CIE A-level biology)

(0)
This revision lesson provides students with the opportunity to assess their understanding of biological molecules (topic 2). The lesson includes a multiple-choice assessment of 10 questions and a PowerPoint containing the answers, where each answer slide shows the exact specification code to enable students to note the areas which may require extra attention. The PowerPoint also contains additional questions to challenge content from topic 2 of the CIE A-level biology specification (2025 - 2027 update) that isn’t directly covered by the 10 questions. This lesson has been designed to be used at the end of topic 2, and in the build up to mocks and the final A-level assessments.