Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Hardy-Weinberg principle (CIE International A-level Biology)
GJHeducationGJHeducation

Hardy-Weinberg principle (CIE International A-level Biology)

(0)
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equations to determine the frequency of alleles, genotypes and phenotypes in a population. Both the detailed PowerPoint and differentiated practice questions on a worksheet have been designed to cover point 17.2 (d) of the CIE International A-level Biology specification which states that students should be able to demonstrate and apply their knowledge and understanding of the use of the principle to calculate frequencies in populations. The lesson begins by looking at the two equations and ensuring that students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged.
Polypeptides and genes (CIE International A-level Biology)
GJHeducationGJHeducation

Polypeptides and genes (CIE International A-level Biology)

(0)
This fully-resourced lesson looks at the structure of genes and explores their role as a base sequence on DNA that codes for the amino acid sequence of a polypeptide. Both the PowerPoint and accompanying resource have been designed to cover point 6.2 (a) of the CIE International A-level Biology specification which states that students should understand how a gene codes for a polypeptide. The lesson begins with a prior knowledge check as the students have to recognise the key term chromosome from a description involving DNA and histones. This allows genes, as sections of a chromosome, to be introduced and the first of a number of quiz rounds is then used to get the students to meet the term locus so that they can understand how each gene has a specific location on a chromosome. Whenever possible, opportunities are taken to make links to the other parts of the CIE specification and this is utilised here as students are reminded that alternative versions of a gene (alleles) can be found at the locus. Moving forwards, students will learn that 3 DNA bases is a triplet and that each triplet codes for a specific amino acid. At this point, the genetic code is introduced and students are challenged to explain how the code contains 64 different triplets. By comparing this number against the number of different amino acids in proteins, students will see how each amino acid is encoded for by more than one triplet and how this explains the degenerate nature of the genetic code which forms a link to an upcoming lesson on gene mutations.
Movement up the xylem (CIE International A-level Biology)
GJHeducationGJHeducation

Movement up the xylem (CIE International A-level Biology)

(0)
This fully-resourced lesson describes how the mechanisms of root pressure and transpiration pull move water upwards in the xylem to the leaves. The detailed PowerPoint and accompanying, differentiated resources have primarily been designed to cover the second part of point 7.2 [c] of the CIE International A-level Biology specification but also cover 7.2 [b] as the cohesion-tension theory and adhesion are described and explained. This lesson has been written to follow on from the end of the previous lesson, which finished with the description of the transport of the water and mineral ions from the endodermis to the xylem. Students are immediately challenged to use this knowledge to understand root pressure and the movement by mass flow down the pressure gradient. Moving forwards, time is taken to study the details of transpiration pull and the interaction between cohesion, tension and adhesion in capillary action is explained. Understanding is constantly checked through a range of tasks and prior knowledge checks are also written into the lesson to challenge the students to make links to previously covered topics such as the structure of the transport tissues. The final part of the lesson considers the journey of water through the leaf and ultimately out of the stomata in transpiration. A step by step guide using questions to discuss and answer as a class is used to support the students before the final task challenges them to summarise this movement through the leaf.
Structure of nucleotides (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of nucleotides (CIE International A-level Biology)

(0)
This detailed lesson describes the structure of a nucleotide including the structure of the phosphorylated nucleotide, ATP. The engaging PowerPoint has been designed to cover point (a) of topic 6.1 as detailed in the CIE International A-level Biology specification and links are made throughout to earlier topics such as biological molecules as well as to upcoming topics like DNA structure and replication. Students were introduced to the term monomer and nucleotide in topic 2, so the start of the lesson challenges them to recognise this latter term when only the letters U, C and T are shown. This has been designed to initiate conversations about why only these letters were used so that the nitrogenous bases can be discussed later in greater detail. Moving forwards, students will learn that a nucleotide is the monomer to a polynucleotide and that deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are two examples of this type of polymer. The main part of the lesson has been filled with various tasks that explore the structural similarities and structural differences between DNA and RNA. This begins by describing the structure of a nucleotide as a phosphate group, a pentose sugar and a nitrogenous base. Time is taken to consider the details of each of these three components which includes the role of the phosphate group in the formation of a phosphodiester bond between adjacent nucleotides on the strand. At this point students are challenged on their understanding of condensation reactions and have to identify how the hydroxyl group associated with carbon 3 is involved along with the hydroxyl group of the phosphoric acid molecule. A number of quiz rounds are used during this lesson, as a way to introduce key terms in a fun and memorable way. One of these rounds introduces adenine and guanine as the purine bases and thymine, cytosine and uracil as the pyrimidine bases and the students are shown that their differing ring structures can be used to distinguish between them. The remainder of the lesson focuses on ATP as a phosphorylated nucleotide and links are made to the hydrolysis of this molecule for energy driven reactions in cells such as active transport
Prokaryotic cells (CIE International A-level Biology)
GJHeducationGJHeducation

Prokaryotic cells (CIE International A-level Biology)

(0)
This detailed lesson describes the key structural features of a prokaryotic cell and compares these against the structures of an eukaryotic cell. The engaging PowerPoint and accompanying resources have been designed to cover specification points 1.2 (d) & (e) as detailed in the CIE International A-level Biology specification and describes how the size and cell structures differ as well as the additional features that are found in some prokaryotic cells and briefly introduces binary fission. A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to recognise a prefix that they believe translates as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus and this acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce
Prokaryotic vs Eukaryotic cells (OCR A-level Biology)
GJHeducationGJHeducation

Prokaryotic vs Eukaryotic cells (OCR A-level Biology)

(0)
This fully-resourced lesson compares the structure and ultrastructure of a prokaryotic cell against an eukaryotic cell. The engaging PowerPoint and accompanying resources have been designed to cover specification point 2.1.1 (k) as detailed in the OCR A-level Biology A specification and describes how the size and cell structures differ as well as the additional features that are found in some prokaryotic cells and briefly introduces binary fission. A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to come up with a 3-letter prefix that they believe will translate as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus which acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce so that students can recognise that these cells do not contain centrioles
Transcription factors & the lac operon (OCR A-level Biology)
GJHeducationGJHeducation

Transcription factors & the lac operon (OCR A-level Biology)

(0)
This fully-resourced lesson describes the regulatory mechanisms that control gene expression at a transcriptional level. The detailed PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.1 (b) as detailed in the OCR A-level Biology A specification which states that the students knowledge should include the lac operon and examples of transcription factors in eukaryotes. . This is one of the more difficult concepts in this A-level course and therefore key points are reiterated throughout this lesson to increase the likelihood of student understanding and to support them when trying to make links to actual biological examples in living organisms. There is a clear connection to transcription and translation as covered in module 2.1.3, so the lesson begins by reminding students that in addition to the structural gene in a transcription unit, there is the promotor region where RNA polymerase binds. Students are introduced to the idea of transcription factors and will understand how these molecules can activate or repress transcription by enabling or preventing the binding of the enzyme. At this point, students are challenged on their current understanding with a series of questions about DELLA proteins so they can see how these molecules prevent the binding of RNA polymerase. Their understanding is then tested again with another example with oestrogen and the ER receptor. The final and main section of the lesson focuses on the lac operon and immediately an opportunity is taken to challenge their knowledge of biological molecules with a task where they have to spot the errors in a passage describing the formation and breakdown of this disaccharide. Students will be able to visualise the different structures that are found in this operon and time is taken to go through the individual functions. A step by step guide is used to walk students through the sequence of events that occur when lactose is absent and when it is present before they are challenged to apply their understanding to an exam question.
Natural selection (CIE A-level Biology)
GJHeducationGJHeducation

Natural selection (CIE A-level Biology)

(0)
This engaging lesson uses the example of resistant bacteria and the modern-day giraffe to describe how natural selection occurs. The PowerPoint and accompanying resources have been designed to cover point 17.2 (a) of the CIE A-level Biology specification but also explains that genetic diversity is important for selection and therefore covers 17.1 (d) at the same time. President Trump’s error ridden speech about viruses antibiotics is used at the beginning of the lesson to remind students antibiotics are actually a treatment for bacterial infections. Moving forwards, 2 quick quiz competitions will initially introduce MRSA and then will show the students that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin. In doing so, they will see the principles of natural selection so they can be applied to different situations such as describing how the anatomy of the modern-day giraffe has evolved over time. The final part of the lesson introduces adaptations and convergent evolution and also links to the need for modern classification techniques which is covered later in topic 17.
Triglycerides, saturated & unsaturated lipids (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Triglycerides, saturated & unsaturated lipids (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes how a triglyceride is synthesised and describes the differences between saturated and unsaturated lipids. The engaging PowerPoint and accompanying resources have been designed to cover specification points 1.5 (i) & (ii) as detailed in the Edexcel International A-level Biology specification and links are also made to related future topics such as the use of lipids as a substrate for respiration and the importance of the myelin sheath for the conduction of an electrical impulse. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from earlier in topic 1 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of lipids mean that these molecules have numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
Magnification & resolution (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Magnification & resolution (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes how magnification and resolution can be achieved using light and electron microscopy. The engaging PowerPoint and accompanying resources have been designed to cover the content of points 3.7 (i) & (ii) of the Edexcel International A-level Biology specification and also considers how specimens are stained. To promote engagement and focus throughout this lesson, the PowerPoint contains a quiz competition with 7 rounds. The quiz rounds found in this lesson will introduce the objective lens powers, the names of the parts of a light microscope and emphasise some of the other key terms such as resolution. The final round checks on their understanding of the different numbers that were mentioned in the lesson, namely the differing maximum magnifications and resolutions. Time is taken to explain the meaning of both of these microscopic terms so that students can recognise their importance when considering the organelles that were met earlier in topic 3. By the end of the lesson, the students will be able to explain how a light microscope uses light to form an image and will understand how electrons transmitted through a specimen or across the surface will form an image with a TEM or a SEM respectively.
The role of mitosis & the cell cycle (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The role of mitosis & the cell cycle (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the role of mitosis and the cell cycle in producing genetically identical daughter cells. The detailed PowerPoint and accompanying resources have been designed to cover point 3.14 of the Edexcel International A-level Biology specification and explains the importance of these cells for growth and asexual reproduction. In an earlier lesson covering meiosis (3.10), students were introduced to the different phases and structures involved in the cycle so this lesson builds on that by providing greater detail of the key events in each phase. Beginning with a focus on interphase, the importance of DNA replication is explained so that students can initially recognise that there are pairs of identical sister chromatids and then can understand how they are separated later in the cycle. A quiz competition has been written into the lesson and this runs throughout, challenging the students to identify the quantity of DNA in the cell (in terms of n) at different points of the cycle. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. Students will understand how the cytoplasmic division that occurs in cytokinesis results in the production of genetically identical daughter cells. This leads into a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture.
Post-transcriptional changes to mRNA (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Post-transcriptional changes to mRNA (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes how post-transcriptional changes to mRNA enable 1 gene to give rise to multiple proteins. The detailed PowerPoint and accompanying resources have been designed to cover point 3.19 of the Edexcel International A-level Biology specification. The lesson begins with a knowledge recall as the students have to recognise the definition of a gene as a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain. This description was introduced in topic 2 and the aim of the start of the lesson is to introduce the fact that despite this definition, most of the nuclear DNA in eukaryotes doesn’t actually code for proteins. A quick quiz competition is then used to introduce exons as the coding regions within a gene before students are challenged to predict the name of the non-coding regions and then to suggest a function for these introns. Moving forwards, pre-mRNA as a primary transcript is introduced and students will learn that this isn’t the mature strand that moves off to the ribosome for translation. Instead, a process called splicing takes place where the introns are removed and the remaining exons are joined together. Another quick quiz round leads to an answer of 20000 and students will learn that this is the number of protein-coding genes in the human genome. Importantly, the students are then told that the number of proteins that are synthesised is much higher than this value and a class discussion period encourages them to come up with biological suggestions for this discrepancy between the two numbers. The lesson concludes with a series of understanding and application questions where students will learn that alternative splicing enables a gene to produce more than a single protein and that this natural phenomenon greatly increases biodiversity.
WJEC GCSE Biology Topic 1.2 REVISION (Respiration and the respiratory system in humans)
GJHeducationGJHeducation

WJEC GCSE Biology Topic 1.2 REVISION (Respiration and the respiratory system in humans)

(0)
This revision resource includes exam questions, understanding checks and quiz competitions, all of which have been designed with the aim of motivating and engaging the students whilst they assess their understanding of the content found in topic 1.2 (Respiration and the respiratory system in humans) of the WJEC GCSE Biology specification. The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention: The need and purpose of the respiratory system The function of the mucus and cilia in the trachea and the effect of smoking on these structures The structure of the alveolus and its blood supply The mechanisms of inspiration and expiration The process of aerobic respiration and the release of energy in the form of ATP Anaerobic respiration and the production of lactic acid
CIE IGCSE Combined Science B6 REVISION (Animal nutrition)
GJHeducationGJHeducation

CIE IGCSE Combined Science B6 REVISION (Animal nutrition)

(0)
This revision resource includes a range of activities that will act to engage and motivate the students whilst they assess their understanding of the Animal nutrition content (topic B6) of the CIE IGCSE Combined Science specification for examination in June and November 2020 and 2021. There are exam questions with explained answers as well as quick tasks and quiz competitions such as “Have you got the right BALANCE” where students are challenged to recognise whether a statement about the balanced diet is accurate or not. The lesson was designed to cover as much content as possible but the following topics have received particular attention: Mechanical digestion Chemical digestion by digestive enzymes Amylase and the break down of starch The adaptations of the small intestine to allow absorption The roles of the hydrochloric acid in gastric juice The break down of lipids in the small intestine The components of a balanced diet This resource includes a detailed and engaging PowerPoint (51 slides) and a worksheet which is differentiated two ways. Efforts have been made to make links to other topics such as enzymes (B4) so students can see the importance of being able to make connections in their answers
The human nervous system (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

The human nervous system (AQA GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content as detailed in point 5.2.1 (The structure and function of the human nervous system) of the AQA GCSE Biology & Combined Science specifications. Consisting of a detailed and engaging PowerPoint (38 slides) and accompanying worksheets, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how receptors, sensory neurones, the CNS, motor neurones and effectors are involved in the detection and response to a stimulus. Reflex reactions are also considered and discussed so that students can recognise how these automatic and rapid responses avoid damage and pain to humans. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions, like FROM NUMBERS 2 LETTERS and YOU DO THE MATH, are used to introduce new terms and important values in a fun and memorable way. This lesson has been written for GCSE-aged students who are studying the AQA GCSE Biology or Combined Science specifications but can be used with older students who need to know the key details of the nervous system for their A level course before taking it to greater depths
Hardy-Weinberg equation (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Hardy-Weinberg equation (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equation to see whether a change in allele frequency is occurring in a population over time. The detailed PowerPoint and differentiated practice questions worksheets have been designed to cover point 4.5 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which expects students to be able to use this mathematical equation The lesson begins by looking at the equation and ensuring that students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged
Mutations (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Mutations (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at how errors in DNA replication can give rise to gene mutations and then links to an earlier topic by exploring how these base changes can affect the primary structure of a polypeptide. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 2.12 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and constantly refers back to points 2.7, 2.8 and 2.9 which detail the genetic code, genes and the structure of proteins. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was taught in 2.6. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a quick quiz competition is used to introduce the names of three types of gene mutation whilst challenging the students to recognise terms which are associated with the genetic code and were met in the previous lesson. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution.
Transcription (CIE International A-level Biology)
GJHeducationGJHeducation

Transcription (CIE International A-level Biology)

(0)
This detailed lesson explains how the process of transcription results in the production of messenger RNA (mRNA). Both the detailed PowerPoint and accompanying resource have been designed to specifically cover the first part of point 6.2 (d) of the CIE International A-level Biology specification. The lesson begins by challenging the students to recall that most of the nuclear DNA in eukaryotes does not code for polypeptides. This allows the promoter region and terminator region to be introduced, along with the structural gene. Through the use of an engaging quiz competition, students will learn that the strand of DNA involved in transcription is known as the template strand and the other strand is the coding strand. Links to previous lessons on DNA and RNA structure are made throughout and students are continuously challenged on their prior knowledge as well as they current understanding of the lesson topic. Moving forwards, the actual process of transcription is covered in a 7 step bullet point description where the students are asked to complete each passage using the information previously provided. An exam-style question is used to check on their understanding before the final task of the lesson looks at the journey of mRNA to the ribosome for the next stage of translation. This lesson has been written to challenge all abilities whilst ensuring that the most important details are fully explained.
Structure of RNA (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of RNA (CIE International A-level Biology)

(0)
This lesson focuses on the structure of RNA and specifically the similarities and differences between this nucleic acid and DNA. The engaging and detailed PowerPoint and accompanying resource have been designed to cover the second part of point 6.1 (b) of the CIE International A-level Biology specification which states that students should be able to describe the structure of this nucleic acid. Students were introduced to the detailed structure of a nucleotide and DNA in previous lessons, so this lesson is written to tie in with those and continuously challenge prior knowledge as well as the understanding of the current topic. The lesson begins with the introduction of RNA as a member of the family of nucleic acids and this enables students to recognise that this polynuclotide shares a number of structural features that were previously seen in DNA. A quiz round called “A FAMILY AFFAIR” is used to challenge their knowledge of DNA to recognise those features that are also found on RNA such as the chain of linked nucleotides, pentose sugars, nitrogenous bases and phosphodiester bonds. The next task pushes them to consider features that have not been mentioned and therefore are differences as they answer a structured exam-style question on how RNA differs from DNA. Students will learn that RNA is shorter than DNA and this leads into the final part of the lesson where mRNA and tRNA are introduced and again they are challenged to use the new information explain the difference in size. Brief details of transcription and then translation are provided so that students are prepared for the upcoming lessons on protein synthesis
PAPER 3 FOUNDATION TIER REVISION (AQA GCSE Combined Science)
GJHeducationGJHeducation

PAPER 3 FOUNDATION TIER REVISION (AQA GCSE Combined Science)

(0)
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics C1 - C5, that will assessed on PAPER 3. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to cover as many sub-topics as possible, but the following have been given particular attention: The relative mass and charge of protons, electrons and neutrons Using the Periodic table to calculate numbers of the sub-atomic particles Writing elements and compounds in chemical symbol equations Covalent structures Drawing dot and cross diagrams for covalent and ionic compounds The transfer of electrons during the formation of an ionic bond Properties of metals and non-metals States of matter Conservation of mass and balancing symbol equations Calculating the relative formula mass Electrolysis of molten salts and aqueous solutions Extraction of metals In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as drawing dot and cross diagrams and writing chemical formulae. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3/4 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 3 exam.