Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The structure and function of the EYE (WJEC GCSE Biology)
GJHeducationGJHeducation

The structure and function of the EYE (WJEC GCSE Biology)

(0)
This engaging and detailed resource, which contains a PowerPoint and accompanying worksheets, has been designed to cover the content of point 2.5 (e) of the WJEC GCSE Biology specification that states that students should know the structure and functions of the following 9 parts of the eye: sclera cornea pupil iris lens choroid retina blind spot optic nerve The lesson was designed to include a wide range of activities to engage and motivate the students so that the knowledge is more likely to stick. These activities include Have you got an EYE for the IMPOSSIBLE, as shown in the cover image, where students have to pick out the 8 structures of the human eye from the list and avoid the IMPOSSIBLE answer. There is also a particular focus on the light-sensitive cells in the retina, the pupil reflex and the change in the shape of the lens to accommodate near and distant objects. This lesson has been designed for students studying the WJEC GCSE Biology course but is suitable for both older and younger students who may be studying the eye.
Synapses (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Synapses (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson has been designed to cover point 8.4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification that states that students should know the structures and function of synapses in nerve impulse transmission. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters are considered to provide the students with a wider view of this topic and to make links to specification point 8.15 The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The final part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics.
OCR GCSE Physics Topic 1 REVISION (Matter)
GJHeducationGJHeducation

OCR GCSE Physics Topic 1 REVISION (Matter)

(0)
This fully-resourced revision lesson challenges the students on their knowledge of the content detailed in topic 1 (Matter) of the OCR GCSE Physics specification. The wide range of activities, which include exam questions with clear explanations, will allow them to assess their understanding of the content and to recognise those areas which require further attention. The lesson has been designed to cover as much of the module as possible but the following specification points have been given particular attention: Recall and apply the equation to calculate density Describe how and why the atomic model has changed over time Describe the atom and recall the typical size Explain the difference in density between different states of matter Describe how mass is conserved when physical changes occur Describe how physical changes differ from chemical changes Define the term specific heat capacity and distinguish between that and specific latent heat Applying the equation to calculate the specific heat capacity Understanding that temperature does not change during changes of state Applying the equation to calculate the specific latent heat Explaining the qualitative relationship between the temperature of a gas and its pressure Applying the equation that links pressure, volume and a constant Explain how doing work on a gas can increase its temperature Explain why pressure in a liquid varies with depth Most of the resources are differentiated to allow students of differing abilities to access the work and be challenged and the PowerPoint guides the students through the range of mathematical skills which are tested in this module
CIE IGCSE Combined Science Topics P5 & P6 REVISION
GJHeducationGJHeducation

CIE IGCSE Combined Science Topics P5 & P6 REVISION

(0)
This is a fully-resourced revision lesson which covers the content detailed in the CORE & SUPPLEMENT sections of topics P5 & P6 (Electrical quantities and electric circuits) of the CIE IGCSE Combined Science specification. The engaging PowerPoint and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quiz competitions to allow students to assess their understanding and to ultimately recognise those areas which need further consideration. The following specification points have been given particular attention in this lesson: The electrical symbols that represent the electrical components Describe the differences between series and parallel circuits Recall that a voltmeter is connected in parallel One volt is equal to one joule per coulomb Recall and use the equations that calculate charge, potential difference and power Recall that an ammeter is connected in series Calculate the currents, potential differences and resistances in series and parallel circuits Know the safety function of the fuse Understand that like charges repel and unlike charges attract This lesson has been designed to fall in line with the heavy mathematical content of the Physics specification with a number of calculation tasks and students are guided through the range of skills that they will have to employ
Internal structure of the heart (CIE International A-level PE)
GJHeducationGJHeducation

Internal structure of the heart (CIE International A-level PE)

(0)
This fully-resourced lesson describes the internal structure of the heart and all of the blood vessels attached to the heart. Both the engaging PowerPoint and accompanying differentiated resources have been designed to cover the 1st part of section A9 as detailed in the CIE International A-level PE specification. The structure of the heart is a topic which was covered in part at GCSE so this lesson has been written to build on that prior knowledge. The main task of the lesson involves students labelling the different structures as they are recalled. Time is taken at different points of the lesson to look at some of the structures and concepts in further detail. For example, students will learn that humans have a double circulatory system, as detailed in point section A10, and that the thicker muscular wall of the left ventricle allows the blood in the systemic circulation to be pumped at a higher pressure than in the pulmonary circulation. Students are also challenged to explain why a hole in the septum would cause health issues for an affected individual and this links back to previous work in unit 1 on energy systems. By the end of the lesson, the students will be able to identify the following structures and describe their individual functions: right and left atria right and left ventricles septum tricuspid and bicuspid valve semi-lunar valves pulmonary artery and pulmonary vein vena cava aorta A number of quiz rounds are used throughout the lesson to introduce key terms in a fun and memorable way before the final round is used as a final check so they can assess whether they can recognise the structures and recall their functions.
Diffusion (CIE International A-level Biology)
GJHeducationGJHeducation

Diffusion (CIE International A-level Biology)

(0)
This lesson describes and explains the processes of simple diffusion and facilitated diffusion. The PowerPoint and accompanying resources have been designed to cover the first part of specification point 4.2 (a) of the CIE International A-level Biology course and the factors that increase the rate of diffusion are covered along with the limitations imposed by the phospholipid bilayer and the role of channel and carrier proteins. The structure and properties of cell membranes was covered in topic 4.1 so this lesson has been written to include continual references to the content of that lesson. This enables links to be made between the movement across a cell membrane with the concentration gradient, the parts of the membrane that are involved and any features that may increase the rate at which the molecules move. A series of questions about the alveoli are used to demonstrate how a large surface area, a short diffusion distance and the maintenance of a steep concentration gradient will increase the rate of simple diffusion. One of two quick quiz rounds is then used to introduce temperature and size of molecule as two further factors that can affect simple diffusion. The remainder of the lesson focuses on facilitated diffusion and describes how transmembrane proteins are needed to move small, polar or large molecules from a high concentration to a lower concentration across a partially permeable membrane
Osmosis and the effect on cells (CIE International A-level Biology)
GJHeducationGJHeducation

Osmosis and the effect on cells (CIE International A-level Biology)

(0)
This detailed lesson describes how the movement of water between solutions and cells has differing effects on animal and plant cells. Both the PowerPoint and accompanying resources have been designed to cover specification points 4.2 (a) and (f) as detailed in the CIE International A-level Biology specification. It’s likely that students will have used the term concentration in their osmosis definitions at GCSE, so the aim of the starter task is to introduce water potential to allow students to begin to recognise osmosis as the movement of water molecules from a high water potential to a lower potential, with the water potential gradient. Time is taken to describe the finer details of water potential to enable students to understand that 0 is the highest value (pure water) and that this becomes negative once solutes are dissolved. Exam-style questions are used throughout the lesson to check on current understanding as well as prior knowledge checks which make links to previously covered topics such as the lipid bilayer of the cell membrane. The remainder of the lesson focuses on the movement of water when animal and plant cells are suspended in hypotonic, hypertonic or isotonic solutions and the final appearance of these cells is described, including any issues this may cause.
Mitosis (Edexcel A-level Biology B)
GJHeducationGJHeducation

Mitosis (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the events of the cell cycle so that students can understand how the genetic material behaves in interphase, mitosis and cytokinesis. The detailed PowerPoint and accompanying resources have been designed to cover specification points 2.3 (i), (ii) and (iii) as detailed in the Edexcel A-level Biology B specification. Depending upon the exam board taken at GCSE, the knowledge and understanding of mitosis and the cell cycle will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson and to address existing errors, key points are emphasised throughout. The cell cycle is introduced at the start of the lesson and the quantity of DNA inside the parent cell is described as diploid and as 2n. A quiz competition has been written into the lesson and this runs throughout, challenging the students to identify the quantity of DNA in the cell (in terms of n) at different points of the cycle. Moving forwards, the first real focus is interphase and the importance of DNA replication is explained so that students can initially recognise that there are pairs of identical sister chromatids and then can understand how they are separated later in the cycle. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. An exam style question will check on their knowledge of the organelles from 2.1 and this acts to remind them that centrioles are responsible for the production of the spindle apparatus, Students will understand how the cytoplasmic division that occurs in cytokinesis results in the production of genetically identical daughter cells. This leads into a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture
The importance of water (WJEC A-level Biology)
GJHeducationGJHeducation

The importance of water (WJEC A-level Biology)

(0)
This detailed lesson describes the properties of water to demonstrate the importance of this molecule for living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point (b) of AS unit 1, topic 1 of the WJEC A-level Biology course and has been specifically designed to ensure that each role is illustrated using a specific example. As this is only the second lesson in the biological compounds topic, which is a topic that students tend to find difficult or potentially less engaging, the planning has centred around the inclusion of a wide variety of tasks to cover the content whilst maintaining motivation and engagement. These tasks include current understanding and prior knowledge checks, discussion points and quick quiz competitions to introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples: polarity ability to form hydrogen bonds surface tension as a solvent thermal properties as a metabolite The final part of the lesson introduces condensation and hydrolysis reactions and students will learn that a clear understanding of these reactions is critical as they will reappear throughout the topic in the synthesis and breakdown of biological compounds
The significance of water (Edexcel A-level Biology B)
GJHeducationGJHeducation

The significance of water (Edexcel A-level Biology B)

(0)
This detailed lesson describes the importance of the dipole nature of water and its numerous properties to living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point 1.7 of the Edexcel A-level Biology B course and the intricate planning ensures that each role is illustrated using a specific example. As the final lesson in the biological molecules topic, not only does this lesson cover the important content related to water but also acts as a revision tool as it checks on key topic 1 content such as condensation and hydrolysis reactions. A wide range of tasks are used to check on current understanding and prior knowledge and quick quiz competitions introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples: high specific heat capacity polar solvent surface tension incompressibility maximum density at 4 degrees Celsius
Glycolysis (Edexcel A-level Biology B)
GJHeducationGJHeducation

Glycolysis (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the conversion of glucose to pyruvate during glycolysis in the cytoplasm and produces ATP and reduced NAD. The engaging PowerPoint and accompanying differentiated resources have been designed to cover point 5.1 (i) as detailed in the Edexcel A-level Biology B specification and includes the phosphorylation of glucose, the breakdown to glycerate-3-phosphate and the subsequent oxidation to produce ATP and the reduced coenzyme. The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the monosaccharides, the breakdown into GP and the production of the ATP, reduced coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed.
CIE IGCSE Combined Science Topic C12 REVISION (Organic chemistry)
GJHeducationGJHeducation

CIE IGCSE Combined Science Topic C12 REVISION (Organic chemistry)

(0)
This revision resource has been designed to include a range of activities that will engage the students whilst they assess their understanding of the content of topic C12 of the CIE IGCSE Combined Science specification for examination in June and November 2020 and 2021. Exam questions, quick tasks and quiz competitions such as “Are you on FORM” will challenge the students on their recall of the content as well as their ability to apply this knowledge. The lesson was written to cover as much of the content as possible, but the following topics have received particular attention: • The conditions needed for cracking • Alkanes and alkenes as the products of cracking • Alkanes as saturated hydrocarbons with single covalent bonds between their atoms • Alkenes as unsaturated hydrocarbons with one double covalent bond • Testing between saturated and unsaturated hydrocarbons using aqueous bromine solution • The fractional distillation of crude oil • The uses of the fractions This resource contains an engaging PowerPoint (51 slides) and associated worksheets and is ideal for use at the end of this topic or in the lead up to mocks or the actual terminal exams
CIE IGCSE Combined Science Topic C9 REVISION (Periodic Table)
GJHeducationGJHeducation

CIE IGCSE Combined Science Topic C9 REVISION (Periodic Table)

(0)
This revision resource contains an engaging and informative PowerPoint (55 slides) and differentiated worksheets that will enable the students to assess their understanding of the topic C9 content of the CIE IGCSE Combined Science specification for examination in June and November 2020 and 2021. The range of exam questions (with explained answers), quick tasks and quiz competitions have been designed to cover as much content as possible but the following topics have received particular attention: • The properties of the alkali metals, halogens and noble gases • Explaining the reactivity of these groups in terms of electron configurations • The transition elements • The arrangement of the Periodic Table • Predicting properties of the undiscovered elements The question sheet about the properties of the different groups has been differentiated three ways so that a range of abilities can access the work
CIE IGCSE Combined Science C2 REVISION (Experimental techniques)
GJHeducationGJHeducation

CIE IGCSE Combined Science C2 REVISION (Experimental techniques)

(0)
This revision resource has been designed to include a range of activities that will engage the students whilst they assess their understanding of the content of topic C2 (Experimental techniques) of the CIE IGCSE Combined Science specification for examination in June and November 2020 and 2021. Exam questions, quick tasks and quiz competitions such as “SEPARATE the FACT from the FICTION” will challenge the students on their recall of the content as well as their ability to apply this knowledge. The lesson was written to cover as much of the content as possible, but the following topics have received particular attention: • Simple distillation and fractional distillation Choosing appropriate apparatus Experimental and investigational skills Crystallisation and filtration Paper chromatography Calculating the retention factor This resource contains an engaging PowerPoint (45 slides) and associated worksheets and is ideal for use at the end of this topic or in the lead up to mocks or the actual terminal exams
Chromosomes, mitosis and the cell cycle (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Chromosomes, mitosis and the cell cycle (AQA GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content of specification point 4.1.2.1 (Chromosomes) and 4.1.2.2 (Mitosis and the cell cycle) of the AQA GCSE Biology and Combined Science course. Cell division is a topic which can cause students a number of problems so this lesson has been designed to ensure that the key details are covered and checked constantly. As well as the understanding and previous knowledge checks, quiz competitions are written into the lesson to maintain engagement and motivation. The lesson begins with the introduction of the term cell cycle and students will learn that the cycle consists of three stages. The key details of each of these stages is covered during the main part of the lesson so that students can meet the specification requirements of being able to describe the main events. Time is allotted for discussion to encourage students to converse about important points such as what happens to the replicated chromosomes during mitosis to enable identical daughter cells to be produced. Opportunities are taken to make links to other topics such as animal and plant cells as students are challenged to recall the functions of some sub-cellular structures. The final part of the lesson involves a series of summary questions which challenges the students to not only recall content but also to apply to unfamiliar organisms and it is not until the final question that they will answer a question about the cell cycle in humans.
Structure and function of the nervous system (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Structure and function of the nervous system (Edexcel GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content as detailed in point 2.13 (The structure and function of the nervous system) of the Edexcel GCSE Biology & Combined Science specifications. Consisting of a detailed and engaging PowerPoint (38 slides) and accompanying worksheets, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how receptors, sensory neurones, the CNS, motor neurones and effectors are involved in the detection and response to a stimulus. There is a focus on the structure of the sensory and motor neurones and the presence of the myelin sheath in both of these neurones is discussed with relation to the increased speed of conduction. Students will understand that a synapses involve the diffusion of neurotransmitters and allow communication between neurones and they are briefly introduced to relay neurones but these are covered in more detail in the reflexes lesson. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions, like FROM NUMBERS 2 LETTERS and SAY WHAT YOU SEE, are used to introduce new terms in a fun and memorable way. This lesson has been written for GCSE-aged students who are studying the Edexcel GCSE Biology or Combined Science specifications but can be used with older students who need to know the key details of the nervous system for their A level course before taking it to greater depths
The components of a REFLEX ARC (WJEC GCSE Biology)
GJHeducationGJHeducation

The components of a REFLEX ARC (WJEC GCSE Biology)

(0)
This lesson resource contains a engaging PowerPoint and accompanying worksheets, all of which have been designed to cover the content of specification point 2.5 (d) on the WJEC GCSE Biology specification. This specification point states that students should know the components of a reflex arc. This lesson builds on the knowledge from the previous lesson on the structure and function of the nervous system (2.5b). The lesson begins by challenging the students to come up with the word reflex having been presented with 5 other synonyms of the word automatic. This leads into a section of discovery and discussion where students are encouraged to consider how a reflex arc can be automatic and rapid despite the fact that the impulse is conducted into the CNS like any other reaction. Students will be introduced to the relay neurone and will learn how this provides a communication between the sensory neurone and the motor neurone and therefore means that these arcs do not involve processing by the brain. Moving forwards, the main task of the lesson challenges the students to write a detailed description of a reflex arc. Assistance is given on the critical section which involves the relay neurone in the spinal cord before they have to use their knowledge of nervous reactions to write a paragraph before and after to complete the description. As a final task, students will have to compare the structure and functions of sensory, motor and relay neurones. Although this lesson has been designed for students studying on WJEC GCSE Biology course, it is also suitable for older students who are studying reflex reactions at A-level and need to recall the main details.
The causes and treatments of DIABETES (WJEC GCSE Biology)
GJHeducationGJHeducation

The causes and treatments of DIABETES (WJEC GCSE Biology)

(0)
This is a fully-resourced lesson consisting of an engaging PowerPoint and differentiated worksheets which have been designed to cover the content of point 2.5 (i) as detailed on the WJEC GCSE Biology specification. This point states that students should demonstrate and apply their knowledge and understanding of how type I and II diabetes are caused and their respective treatments. There are links made throughout the lesson between this topic and the control of blood glucose concentration from specification point 2.5 (h). The lesson has been designed to take the format of a diabetic clinic where the students perform the duties of the attending doctor. They will move through the different stages of the role which includes identifying symptoms, diagnosis of type I or II and communication with the patients to reveal the findings. The wide range of activities will enable the students to learn how to spot that someone is suffering from diabetes and the similarities and differences between the different types so they can determine which one is being presented. The summary tasks challenge the students to construct a letter to a patient who is suffering from type II and to identify the correct type from another doctor’s letter. Understanding and previous knowledge checks are interspersed with quiz competitions, like the one shown in the cover image, which make the learning fun and memorable and enable the students to assess their progress. This lesson has been designed for students studying the WJEC GCSE Biology course but is suitable for both younger and older students who are focusing on this disease
Homeostasis (WJEC GCSE Biology)
GJHeducationGJHeducation

Homeostasis (WJEC GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover the content found in specification point 2.5 (f) of the WJEC GCSE Biology specification which states that students should understand why animals need to regulate the conditions inside their bodies. This resource contains an engaging and detailed PowerPoint (45 slides) and accompanying worksheets The lesson begins by challenging the student’s literacy skills as they are asked to recognise the key term, optimum, from 6 of its’ synonyms. Moving forwards, a range of quiz competitions are used to introduce the term homeostasis and to provide a definition for this key process. Students are given a newspaper article about water and blood glucose so they can recognise 2 conditions which are controlled in the human body. The next part of the lesson looks at the importance of maintaining the levels of water and glucose by considering the medical problems that could arise if they move away from the optimum levels. Students will learn that body temperature is also controlled and links are made to earlier knowledge as they have to explain why an increase in temperature above the set point would be an issue because of the denaturation of enzymes. The rest of the lesson looks at the three parts that are included in all control systems before a final quiz round introduces the receptors, coordination centre and effectors in the control of body temperature. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the WJEC GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the process in more detail
Edexcel GCSE Science PAPER 2 REVISION HT
GJHeducationGJHeducation

Edexcel GCSE Science PAPER 2 REVISION HT

(0)
This is a fully-resourced revision lesson that has been written to challenge students on their knowledge and understanding of the PAPER 2 topics. The range of tasks will prepare the students to answer the range of questions that they may encounter on topics B1 and B6 - B9 as detailed in the Pearson Edexcel GCSE Combined Science specification. The lesson has been designed to take place on the PAPER 2 HIGH STREET and the tasks include exam-style questions with displayed mark schemes, engaging quiz competitions and discussion points to allow the following points to be covered: Eukaryotic vs Prokaryotic cells Converting between units of size The structures of the animal and plant cells The structure of the human heart Calculating the surface area to volume ratio Adaptations of the gas exchange system The blood vessels associated with the human heart Calculating the cardiac output The features of the root hair cell to allow for absorption The nitrogen cycle The relationship between the rate of photosynthesis and light intensity and distance Using the inverse square law calculation Temperature and photosynthesis The regulation of blood glucose by the release of insulin and glucagon Diabetes type I and II Calculating the BMI The interaction of the reproductive hormones in the menstrual cycle IVF as assisted reproductive technology The hormonal and barrier methods of contraception Eutrophication as a negative human interaction in an ecosystem The carbon cycle In order to cater for the range of abilities that can be found in Combined Science classes, most of the tasks have been differentiated. There are also a number of step by step guides to demonstrate how to tackle some of the more difficult concepts including the mathemetical elements If you would like to see the quality of these revision lessons, download the PAPER 1 REVISION LESSON which has been shared for free