Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1246k+Views

2049k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The gross and fine anatomy of the kidney
GJHeducationGJHeducation

The gross and fine anatomy of the kidney

(1)
This lesson has been designed to act as an introduction to the anatomy of the kidney before students move on to study each structure of the nephron in more detail. The lesson considers both the gross anatomy, in terms of the renal cortex and medulla and then looks at the functional unit of the nephron. The function of the different parts of the nephron are briefly discussed and the features that relate to function are considered. This lesson has been designed for A-level students but could be used with higher ability GCSE students.
Temperature control in ECTOTHERMS (OCR A-level Biology A)
GJHeducationGJHeducation

Temperature control in ECTOTHERMS (OCR A-level Biology A)

(1)
This concise lesson has been written to cover specification point 5.1.1 (d) of the OCR A-level Biology A specification which states that students should be able to apply an understanding of the behavioural responses in temperature control in ectotherms. The main aim when designing the lesson was to support students in making sensible and accurate decisions when challenged to explain why these types of organisms have chosen to carry out a particular response. A wide range of animals are used so students are engaged in the content matter and are prepared for the unfamiliar situations that they will encounter in the final exam. Time is also taken to compare ectotherms against endotherms so that students can recognise the advantages and disadvantages of ectothermy. This lesson has been written for A-level students studying on the OCR A-level Biology A course. Lessons on temperature control in endotherms and the principles of homeostasis and cell signalling, which are also in module 5.1.1, are also available so please download those too as they will allow students to make connections between one lesson, the previous and the next.
The importance of water (Edexcel A-level Biology A)
GJHeducationGJHeducation

The importance of water (Edexcel A-level Biology A)

(1)
Water is very important for living organisms because of its numerous properties and this lesson focuses on its role as a solvent in transport. The engaging and detailed PowerPoint and accompanying worksheet have been designed to cover point 1.2 of the Pearson Edexcel A-level Biology A specification and also explains the importance of the dipole nature for this role in transport. A mathematical theme runs throughout the lesson as students have to match the numbers calculated in the starter task to water statistics, such as the percentage of the volume of blood plasma that is water. This has been included to try to increase the relevance of each property so that it can be described in a biological context. Time is taken at the beginning of the lesson to describe the structure of water in terms of the covalent bonds between the oxygen and hydrogen atoms as well as the hydrogen bonds which form between molecules because of its polarity. Students will understand how water is a solvent which means that it is critical for transport in animals, a topic covered in the next few lessons but also for transport in plants as discussed in topic 4. The high heat capacity and latent heat of vaporisation of water is also discussed and explained through the examples of thermoregulation and the maintenance of a stable environment for aquatic animals. The final part of the lesson focuses on the involvement of water in condensation and hydrolysis reactions, two reactions which must be well understood for topic 1 and 2 and the formation and breakage of polysaccharides, lipids, polypeptides and polynucleotides.
Phosphorus cycle (AQA A-level biology)
GJHeducationGJHeducation

Phosphorus cycle (AQA A-level biology)

(0)
This lesson describes how phosphate ions are cycled through rocks, water, soil and organisms, including the roles of saprobionts and mycorrhizae. The PowerPoint and accompanying resources are part of the 2nd lesson in a series of 3 lessons which have been designed to cover the content of topic 5.4 (nutrient cycles) of the AQA A-level biology specification. The lesson begins by challenging the students to use a single similarity and difference to recognise that DNA and ATP are being compared. A series of prior knowledge checks are then used to get them to recall that phosphate ions are found in the structure of these biological molecules, as well as in phospholipids. A selection of multiple-choice questions will challenge their knowledge of these molecules further. All answers are embedded into the PowerPoint to allow the students to assess their progress. Moving forwards, the rest of the lesson focuses on the recycling of phosphorus, and includes details of weathering, assimilation, feeding, and decomposition. A quick quiz round is used to reveal the term, guano, and students will learn that this waste product of seabirds contains a high proportion of phosphate ions, and therefore can be used as a natural fertiliser, which links to the final lesson in this series. The other two lessons in this series covering topic 5.4 are the nitrogen cycle and leaching and eutrophication.
Arteries, veins and capillaries (CIE International A-level Biology)
GJHeducationGJHeducation

Arteries, veins and capillaries (CIE International A-level Biology)

(2)
This fully-resourced lesson explains the relationship between the structure and function of arteries, veins and capillaries. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 8.1 © of the CIE International A-level Biology specification. This lesson has been written to build on any prior knowledge from GCSE to enable students to fully understand why a particular type of blood vessel has particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of the GUESS WHO game is used to introduce smooth muscle and collagen in the tunica media and externa and again the reason for their presence is explored and explained. Moving forwards, the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels. The final part of the lesson looks at the role of the capillaries in exchange. Links are made to diffusion to ensure that students can explain how the red blood cells pressing against the endothelium results in a short diffusion distance. It is estimated that it will take about 2 hours of allocated A-level Biology teaching time to cover the detail included in this lesson
Introduction to gene mutations (CIE International A-level Biology)
GJHeducationGJHeducation

Introduction to gene mutations (CIE International A-level Biology)

(2)
This detailed lesson has been written to act as an introduction to gene mutations and the potential effects on the polypeptide chain. The engaging PowerPoint and accompanying resources have been designed to cover point 6.2 (b) and © of the CIE International A-level Biology specification and explores how substitution, insertions and deletions can change the primary structure. The lesson has been written to tie in with previous lessons where the genetic code was introduced and students will be challenged to describe how the degenerate nature of the code means that a substitution mutation doesn’t always lead to a change in structure. As detailed in point ©, students will learn how a single change to the primary structure of the HBB gene results in abnormal haemoglobin and they are challenged to recall knowledge about the structure and function of haemoglobin whilst completing a detailed passage about sickle cell anaemia. Time is also taken to look at changes to the structure as a result of frameshift mutations and this is related to the non-overlapping code. This topic is met again in topic 16 so this lesson has been designed to act as an introduction before greater detail can be added
Cell specialisation and organisation (OCR A-level Biology A)
GJHeducationGJHeducation

Cell specialisation and organisation (OCR A-level Biology A)

(0)
This fully-resourced lesson describes how the cells of multicellular organisms are specialised for particular functions and organised into tissues, organs and organ systems. The detailed and engaging PowerPoint and accompanying resources have been designed to cover points 2.1.6 (h, i, j and k) of the OCR A-level Biology A specification and also describes how stem cells differentiate, including the production of erythrocytes (red blood cells) and neutrophils. The start of the lesson focuses on the difference in the SA/V ratio of an amoeba and a human in order to begin to explain why the process of differentiation is critical for multicellular organisms. Students will discover that a zygote is a stem cell which can express all of the genes in its genome and divide by mitosis. Time is then taken to introduce gene expression as this will need to be understood in the later topics of the course. Moving forwards, the lesson uses the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students will understand why the shape and arrangement of these cells differ in the trachea and alveoli in line with function. The link between specialised cells and tissues is made at this point of the lesson with these examples of epithelium and students will also see how tissues are grouped into organs and then into organ systems. The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy mesophyll cells and the guard cells are covered at length and in detail. Step by step guides will support the students so that they can recognise the importance of the structures and links are made to upcoming topics such as the vascular tissues so that students are prepared for these when covered in the future.
CIE International A-level Biology Topic 2 REVISION (Biological molecules)
GJHeducationGJHeducation

CIE International A-level Biology Topic 2 REVISION (Biological molecules)

(2)
This is a fully-resourced and engaging REVISION LESSON which challenges the students on their knowledge and understanding of the topic 2 content (Biological molecules) of the CIE International A-level Biology specification. This topic isn’t always well understood by students so the lesson has been designed to include a wide range of activities that include differentiated exam questions, quick tasks and quiz competitions which will engage the students whilst they assess their progress. It has been designed to cover as much of the specification as possible but the following sub-topics have received particular attention: Formation of polysaccharides by glycosidic bonds between monomers Recognising monosaccharides, disaccharides and polysaccharides The structure of starch and glycogen in relation to their function as stores and providers of energy Water as a solvent with a high specific heat capacity and a high specific latent heat of vaporisation Structure and bonding in proteins The structure of globular and fibrous proteins as demonstrated by haemoglobin and collagen The structure and function of cellulose Links are made to other topics so that students are able to see how questions can include parts from different Biological concepts.
Light-independent reactions (Edexcel A-level Biology A)
GJHeducationGJHeducation

Light-independent reactions (Edexcel A-level Biology A)

(1)
This lesson describes the light-independent reactions of photosynthesis as reduction of carbon dioxide using the products of the light-dependent reactions. The detailed PowerPoint and accompanying resources have been designed to cover point 5.8 (i) of the Pearson Edexcel A-level Biology A (Salters-Nuffield) specification and therefore describes carbon fixation in the Calvin cycle and the roles of GP, GALP, RuBP and RUBISCO). The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and GALP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RUBISCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to GALP The use of the majority of the GALP in the regeneration of RuBP A step-by-step guide, with selected questions for the class to consider together, is used to show how 6 turns of the cycle are needed to form the GALP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed. This lesson has been specifically written to tie in with the previous lessons on the structure of a chloroplast and the light-dependent reactions as well as the upcoming lesson on the products of the light-independent reactions.
Spearman's rank correlation (CIE A-level Biology)
GJHeducationGJHeducation

Spearman's rank correlation (CIE A-level Biology)

(1)
This lesson describes how to use the Spearman’s rank correlation to analyse the relationships between the distribution of species and abiotic and biotic factors. The PowerPoint and accompanying exam-style question are the first lesson in a series of 2 which have been designed to cover point 18.1 (e) of the CIE A-level Biology specification and challenges the students on their knowledge of the t-test as covered in topic 17 as well as preparing students for the next lesson on the use of the Pearson’s linear correlation formula. As with the lessons on the t-test and Simpson’s index of diversity, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question which assesses whether there is a relationship between light intensity and % plant cover in a habitat. The mark scheme is displayed on the PowerPoint so the students can assess their understanding and address any misconceptions that may arise
Edexcel A-level bio B TOPIC 1 REVISION
GJHeducationGJHeducation

Edexcel A-level bio B TOPIC 1 REVISION

(0)
This revision lesson uses a 20 question multiple-choice assessment to challenge the students on their knowledge and understanding of biological molecules. The answers to the 20 questions are embedded into the accompanying PowerPoint and this resource also contains summative KEY POINTS as well as additional questions (and answers) to challenge topic 1 content that wasn’t directly covered by the multiple-choice questions. At the bottom of each answer slide, the relevant specification code is displayed to allow students to identify the exact parts of the specification which need further attention. The lesson has been designed to be used with students once they finish topic 1, or in the lead up to mock or final A-level biology examinations.
Cell structure REVISION (Module 2.1.1)
GJHeducationGJHeducation

Cell structure REVISION (Module 2.1.1)

(0)
This revision lesson has been designed to be used with students when they finish module 2.1.1 or in the lead up to mock or final examinations. It consists of a 10 question multiple-choice assessment and a PowerPoint which contains the answers, related key points and additional questions to challenge content not directly covered by the multiple-choice questions. As cell structure in module 2.1.1 tends to be the 1st topic covered on the OCR A-level biology A course, a deep and full understanding of the content is critical for understanding of later topics and therefore this lesson acts to identify any errors or misconceptions immediately.
Eukaryotic and prokaryotic cells (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Eukaryotic and prokaryotic cells (Edexcel GCSE Biology & Combined Science)

(1)
This fully-resourced lesson has been written to cover the content as detailed in specification point 1.1 (Sub-cellular structures of eukaryotic and prokaryotic cells) of the Edexcel GCSE Biology & Combined Science specifications. The lesson includes a detailed and engaging PowerPoint (63 slides) which contains a wide range of activities, each of which has been designed to motivate the students whilst covering the content in detail. At the completion of the lesson, students will know the sub-cellular structures that are found in bacterial, animal and plant cells and understand how the presence of these structures relates to the function of these cells. Understanding checks are written into the lesson at regular points so that students can constantly assess their understanding of this specification point and quiz competitions like “FROM NUMBERS 2 LETTERS” and “THE BIG REVEAL” introduce key terms to the students in an interesting and memorable way. This lesson has been designed for GCSE-aged students studying the Edexcel course but is also suitable for younger students who want to learn about cells in more detail at KS3.
Glycolysis (WJEC A-level biology)
GJHeducationGJHeducation

Glycolysis (WJEC A-level biology)

(0)
This lesson describes glycolysis as the 1st stage of respiration and a source of triose phosphate, pyruvate, reduced NAD and ATP. The PowerPoint and accompanying resources have been designed to cover topic 3 point (b) of A2 unit 3 as detailed in the WJEC A-level biology specification. The lesson divides this multi-step reaction into 3 key parts, which are phosphorylation of glucose, the splitting into triose phosphate and then the oxidation of triose phosphate to produce pyruvate, reduced NAD and ATP. The difference between the gross and net gain of ATP from glycolysis is explained as well as the importance of the reduced NAD for the electron transport system or the conversion of pyruvate to lactate. As shown in the cover image, there are plenty of understanding checks to allow students to assess progress, and this includes several quick quiz rounds.
Cytoskeleton (OCR A-level Biology A)
GJHeducationGJHeducation

Cytoskeleton (OCR A-level Biology A)

(1)
This lesson describes the importance of the cytoskeleton, and focuses on the role of these proteins in the transport within cells and cell movement. The PowerPoint and accompanying resource have been designed to cover point 2.1.1 (j) of the OCR A-level Biology A specification and has been specifically designed to tie in with The previous lesson covered the ultrastructure of eukaryotic cells and the function of the different cellular components and this lesson has been planned to build on that knowledge to show how the cytoskeleton allows for the movement of these organelles from one part of the cell to another. In particular, the students will recognise how the dragging movement of the motor proteins along the microtubule track is important for the proteins produced at the RER to move to the Golgi before the vesicles are then moved to the membrane for exocytosis. In this way, this lesson also covers specification point 2.1.1 (i). Other examples such as the movement of the synaptic vesicles and the contraction of the spindle fibres during anaphase are used to consolidate understanding further. The cilia and the flagellum are also described and links are made to related topics such as the primary non-specific defences against pathogens. In order to engage and motivate the students during the 7 lessons in this module, a running quiz competition has been written into each of the lessons and 3 rounds are incorporated into this lesson. A quiz scoresheet to keep track of the points is included in this resource.
ULTRAFILTRATION (AQA A-level Biology)
GJHeducationGJHeducation

ULTRAFILTRATION (AQA A-level Biology)

(2)
This detailed lesson has been written to cover the part of specification point 6.4.3 of the AQA A-level Biology specification which states that students should be able to describe how the structure of the nephron allows for the formation of glomerular filtrate. The aim of the design was to give the students the opportunity to discover the function of ultrafiltration and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem This lesson has been written for students studying on the AQA A-level course and ties in nicely with the other kidney lessons on the structure of the nephron, selective reabsorption and osmoregulation
Edexcel GCSE Physics EQUATIONS REVISION
GJHeducationGJHeducation

Edexcel GCSE Physics EQUATIONS REVISION

(1)
This detailed and engaging lesson has been written to challenge the students on their recall and application of the 22 equations which they have to know for the AQA GCSE Physics exams. The lesson is designed to not only check that they know these equations but also on their ability to rearrange formulae when required and to convert between units. The main task of the lesson consists of 13 exam-style questions which challenge 12 of these recall equations and then an engaging quiz competition and class discussions are used to identify the other 10. Students are guided throughout the lesson in the use of the mathematical skills and are shown examples to aid their progress. This lesson has been designed to tie in with the other 12 uploaded revision lessons which cover the content of the topics on the Edexcel GCSE Physics specification
CIE IGCSE Combined Science P1 REVISION (Motion)
GJHeducationGJHeducation

CIE IGCSE Combined Science P1 REVISION (Motion)

(1)
This lesson has been written to act as a revision tool for students at the completion of topic P1 of the CIE IGCSE Combined Science specification or in the lead up to mock or terminal exams. This motion topic is extensive and the engaging PowerPoint and accompanying resources have been designed to include a wide range of activities that will allow the students to assess their understanding of the core and supplement sections and to recognise any areas which need further attention. This specification is fairly heavy in mathematical content and so a lot of opportunities are presented for a range of skills to be tested and the PowerPoint guides students through the application of these requirements such as rearranging the formula and converting between units. The following specification points have received a particular focus in this lesson: Calculate average speed using total distance and total time Plot and interpret a speed-time graph Recognise different motions on a speed time graph and relate this to the resultant force Calculate acceleration and distance travelled from a speed-time graph Distinguish between mass and weight Recall and use the equation W = mg to calculate the weight Recall and use the equation to calculate density Interpret extension-load graphs and calculate the spring constant Recognise the significance of the term, “limit of proportionality” Recall and use the equation to calculate pressure A number of quick quiz rounds, such as FILL THE VOID and THE BIG REVEAL, are used to maintain engagement and motivation and to challenge the students on their recall of important points. It is estimated that it will take in excess of 2 hours of IGCSE teaching time to cover the detail included in this lesson
Control of blood glucose concentration (AQA GCSE Combined Science FT)
GJHeducationGJHeducation

Control of blood glucose concentration (AQA GCSE Combined Science FT)

(3)
This lesson has been designed to cover the detail of specification point 4.5.3.2 of the AQA GCSE Combined Science FOUNDATION TIER which states that students should be able to describe how the body detects and responds to an increase in blood glucose concentration. A considerable amount of time has been taken in the planning to ensure that the wide range of activities engages and motivates the students but that the key details are covered and understanding is checked and checked again. The start of the lesson uses a range of prior knowledge checks and quiz competitions to answer the questions of what actually is glucose and why is it so important that the levels in the blood are controlled. Students are then introduced to glycogen and the fact that this carbohydrate can be stored is reiterated so that they can recognise how glucose must be converted into this substance to lower the blood concentration. Again, a quiz round is used to get them to recall that the pancreas will be the receptor and the liver will act as the effector. The main task of the lesson involves the formation of a bullet point answer where students are challenged to use the information from earlier in the lesson to complete this description.
Continuous & discontinuous variation (CIE A-level Biology)
GJHeducationGJHeducation

Continuous & discontinuous variation (CIE A-level Biology)

(1)
This fully-resourced lesson describes the differences between continuous and discontinuous variation. The engaging PowerPoint and accompanying resources have been designed to cover point 17.1 (a) of the CIE A-level Biology specification but also acts as a revision of topic 16 as it challenges students on their knowledge of gene mutations and meiosis. The students begin the lesson by having to identify phenotype and species from their respective definitions so that a discussion can be encouraged where they will recognise that phenotypic variation within a species is due to both genetic and environmental factors. The main part of the the lesson focuses on these genetic factors, and describes how mutation and the events of meiosis contribute to this variation. A range of activities, which include exam-style questions and quick quiz rounds, are used to challenge the students on their knowledge and understanding of substitution mutations, deletions, insertions, the genetic code, crossing over and independent assortment. Moving forwards, the concept of multiple alleles is introduced and students will learn how the presence of more than 2 alleles at a locus increases the number of phenotypic variants. Another quick quiz round is used to introduce polygenic inheritance and the link is made between this inheritance of genes at a number of loci as an example of continuous variation. In line with the title of the lesson, the next task challenges them to recognise descriptions and examples which apply to the different types of variations. The final part of the lesson introduces a few examples where environmental factors affect phenotype, such as chlorosis in plants, so that students are prepared for the following lesson.