Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The sliding filament model of MUSCULAR CONTRACTION (OCR A-level Biology A)
GJHeducationGJHeducation

The sliding filament model of MUSCULAR CONTRACTION (OCR A-level Biology A)

(1)
This is a fully-resourced lesson that covers the content of specification point 5.1.5 (l) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the sliding filament model of muscular contraction. The wide range of activities included in the lesson will engage and motivate the students whilst the understanding and previous knowledge checks will not only allow them to assess their progress but also challenge them to make links to other Biology topics. The lesson begins by using an idea from the quiz show POINTLESS to get them to recognise that myology is the study of muscles. This leads nicely into the next task, where they have to identify three further terms (from 12) which will also begin with myo and are the names of structures involved in the arrangement of skeletal muscle. Key terminology is used throughout the lesson so that students feel comfortable when they encounter this in questions. Students are introduced to the sarcomere and the bands and zones that are found within a myofibril so they can discover how most of these structures narrow but the A band, which is the length of the myosin filament, stays the same length between resting and contracted muscle. This has been designed to lead into a discussion point where they are encouraged to consider how the sarcomere can narrow but the lengths of the myofilaments can remain the same. The main task of the lesson involves the formation of a bullet point description of the sliding filament model where one event is the trigger for the next. Time is taken during this section to focus on the involvement of the calcium ions but also ATP and the idea of the sources of this molecule, including creatine phosphate, are discussed in more detail later in the lesson. The final part of the lesson involves students having to apply their knowledge by describing the effect on muscle contraction when a part of a structure is unable to function correctly. This lesson has been designed for students studying the OCR A-level Biology course and ties in nicely with the other lessons on this particular topic such as neuromuscular junctions as well as the other uploaded lessons from module 5
Translocation (AQA A-level Biology)
GJHeducationGJHeducation

Translocation (AQA A-level Biology)

(0)
This lesson describes the mass flow hypothesis for the mechanism of translocation in plants and includes details of active loading at the source. Both the detailed PowerPoint and accompanying resources have been designed to cover the 4th part of point 3.4.2 of the AQA A-level Biology specification. The lesson begins by challenging the students to recognise the key term translocation when it is partially revealed and then the rest of the lesson focuses on getting them to understand how this mechanism involves the mass flow of assimilates down the hydrostatic pressure gradient from the source to the sink. It has been written to tie in with an earlier lesson in topic 3.4.2 where the structure of the phloem tissue was initially introduced and the students are continually challenged on this prior knowledge. A step-by-step guide is used to describe how sucrose is loaded into the phloem at the source by the companion cells. Time is taken to discuss key details such as the proton pumping to create the proton gradient and the subsequent movement back into the cells by facilitated diffusion using co-transporter proteins. Students will learn that the hydrostatic pressure at the source is high, due to the presence of the water and sucrose as cell sap, and that this difference when compared to the lower pressure at the sink leads to the movement along the phloem. A number of quick quiz rounds are included in the lesson to maintain engagement and to introduce key terms and the lesson concludes with a game of SOURCE or SINK as students have to identify whether a particular plant structure is one or the other (or both)
Monomers and polymers (AQA A-level Biology)
GJHeducationGJHeducation

Monomers and polymers (AQA A-level Biology)

(2)
This lesson introduces monomers, polymers, condensation and hydrolysis reactions and chemical bonds to prepare students for the rest of topic 1 (biological molecules). The PowerPoint and accompanying worksheet cover point 1.1 of the AQA A-level Biology course, and as this is likely to be the very first lesson that the students encounter, the range of engaging tasks have been specifically designed to increase the likelihood of the key points and fundamentals being retained. Monomers were previously met at GCSE and so the beginning of the lesson focuses on the recall of the meaning of this key term before the first in a series of quiz rounds is used to introduce nucleotides, amino acids and monosaccharides as a few of the examples that will be met in this topic. Dipeptides and disaccharides are introduced as structures containing 2 amino acids or sugars respectively and this is used to initiate a discussion about how monomers need to be linked together even more times to make the larger chains known as polymers. At this point in the lesson, the students are given the definition of a condensation reaction and then challenged to identify where the molecule of water is eliminated from when two molecules of glucose join. A series of important prefixes and suffixes are then provided and students use these to predict the name of the reaction which has the opposite effect to a condensation reaction - a hydrolysis reaction. Links to upcoming lessons are made throughout the PowerPoint to encourage students to begin to recognise the importance of making connections between topics.
The gross and fine anatomy of the kidney
GJHeducationGJHeducation

The gross and fine anatomy of the kidney

(1)
This lesson has been designed to act as an introduction to the anatomy of the kidney before students move on to study each structure of the nephron in more detail. The lesson considers both the gross anatomy, in terms of the renal cortex and medulla and then looks at the functional unit of the nephron. The function of the different parts of the nephron are briefly discussed and the features that relate to function are considered. This lesson has been designed for A-level students but could be used with higher ability GCSE students.
Nucleotides (OCR A-level Biology)
GJHeducationGJHeducation

Nucleotides (OCR A-level Biology)

(1)
This detailed lesson describes the structure of a nucleotide and a phosphorylated nucleotide and explains how polynucleotides are synthesised and broken down. The engaging PowerPoint has been designed to cover points [a], [b] and [c] of module 2.1.3 as detailed in the OCR A-level Biology A specification and links are made throughout to earlier topics such as biological molecules. Students were introduced to the term monomer and nucleotide in the previous module, so the start of the lesson challenges them to recognise this latter term when only the letters U, C and T are shown. This has been designed to initiate conversations about why only these letters were used so that the nitrogenous bases can be discussed later in greater detail. Moving forwards, students will learn that a nucleotide is the monomer to a polynucleotide and that deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are two examples of this type of polymer. The main part of the lesson has been filled with various tasks that explore the structural similarities and structural differences between DNA and RNA. This begins by describing the structure of a nucleotide as a phosphate group, a pentose sugar and a nitrogenous base. Time is taken to consider the details of each of these three components which includes the role of the phosphate group in the formation of a phosphodiester bond between adjacent nucleotides on the strand. At this point students are challenged on their understanding of condensation reactions and have to identify how the hydroxyl group associated with carbon 3 is involved along with the hydroxyl group of the phosphoric acid molecule. A number of quiz rounds are used during this lesson, as a way to introduce key terms in a fun and memorable way. One of these rounds introduces adenine and guanine as the purine bases and thymine, cytosine and uracil as the pyrimidine bases and the students are shown that their differing ring structures can be used to distinguish between them. The remainder of the lesson focuses on ADP and ATP as phosphorylated nucleotides and links are made to the hydrolysis of this molecule for energy driven reactions in cells such as active transport
Arteries, veins and capillaries (CIE International A-level Biology)
GJHeducationGJHeducation

Arteries, veins and capillaries (CIE International A-level Biology)

(2)
This fully-resourced lesson explains the relationship between the structure and function of arteries, veins and capillaries. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 8.1 © of the CIE International A-level Biology specification. This lesson has been written to build on any prior knowledge from GCSE to enable students to fully understand why a particular type of blood vessel has particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of the GUESS WHO game is used to introduce smooth muscle and collagen in the tunica media and externa and again the reason for their presence is explored and explained. Moving forwards, the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels. The final part of the lesson looks at the role of the capillaries in exchange. Links are made to diffusion to ensure that students can explain how the red blood cells pressing against the endothelium results in a short diffusion distance. It is estimated that it will take about 2 hours of allocated A-level Biology teaching time to cover the detail included in this lesson
Thermoregulation (Edexcel GCSE Biology)
GJHeducationGJHeducation

Thermoregulation (Edexcel GCSE Biology)

(1)
This lesson has been designed to cover the content in points 7.11 and 7.12 of the Edexcel GCSE Biology specification which states that students should be able to explain how thermoregulation takes place, with particular reference to the role of the skin. This resource contains an engaging PowerPoint and a differentiated worksheet, which together use a wide range of activities to motivate the students and to engage them in the content matter. The lesson begins by challenging the students to calculate a number from a series of biological based statements. This number is 37 which introduces the students to this temperature as the set-point at which homeostasis acts to maintain the body temperature. At this point of the lesson, a number of prior knowledge checks are used to challenge the students on their recall of the parts of a control system as well as challenging them to explain why temperatures above or below this set point can be problematic for body reactions. The main part of the lesson goes through the steps in the body’s detection and response to an increase in temperature and students will be introduced to the range of structures involved. Time is taken to focus on the role of the skin as an effector and key details about vasodilation and the production of sweat are discussed at length. The final task challenges the students to use all of the information from earlier in the lesson to write a detailed description of how the body detects and responds to a decrease in temperature. This lesson has been written for students studying on the Edexcel GCSE Biology course but is also suitable for older students who are studying thermoregulation and need to recall the key details.
Biuret test & 1.4.1 REVISION (AQA A-level Biology)
GJHeducationGJHeducation

Biuret test & 1.4.1 REVISION (AQA A-level Biology)

(1)
This lesson describes the biuret test for proteins and then uses a range of activities to challenge the students on their knowledge of topic 1.4.1. The engaging PowerPoint and accompanying resources are part of the last lesson in a series of 3 lessons which have been designed to cover the content detailed in topic 1.4.1 (General properties of proteins) of the AQA A-level Biology specification. The first section of the lesson describes the steps in the biuret test and challenges the students on their recall of the reducing sugars and starch tests from topic 1.2 to recognise that this is a qualitative test that begins with the sample being in solution. The students will learn that the addition of sodium hydroxide and then copper sulphate will result in a colour change from light blue to lilac if a protein is present. The remainder of the lesson uses exam-style questions with displayed mark schemes, understanding checks and quick quiz competitions to engage and motivate the students whilst they assess their understanding of this topic. The following concepts are tested during this lesson: The general structure of an amino acid The formation of dipeptides and polypeptides through condensation reactions The primary, secondary, tertiary and quaternary structure of a protein Biological examples of proteins and their specific actions (e.g. antibodies, enzymes, peptide hormones)
Light-independent reactions (Edexcel A-level Biology A)
GJHeducationGJHeducation

Light-independent reactions (Edexcel A-level Biology A)

(1)
This lesson describes the light-independent reactions of photosynthesis as reduction of carbon dioxide using the products of the light-dependent reactions. The detailed PowerPoint and accompanying resources have been designed to cover point 5.8 (i) of the Pearson Edexcel A-level Biology A (Salters-Nuffield) specification and therefore describes carbon fixation in the Calvin cycle and the roles of GP, GALP, RuBP and RUBISCO). The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and GALP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RUBISCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to GALP The use of the majority of the GALP in the regeneration of RuBP A step-by-step guide, with selected questions for the class to consider together, is used to show how 6 turns of the cycle are needed to form the GALP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed. This lesson has been specifically written to tie in with the previous lessons on the structure of a chloroplast and the light-dependent reactions as well as the upcoming lesson on the products of the light-independent reactions.
CIE International A-level Biology Topic 2 REVISION (Biological molecules)
GJHeducationGJHeducation

CIE International A-level Biology Topic 2 REVISION (Biological molecules)

(2)
This is a fully-resourced and engaging REVISION LESSON which challenges the students on their knowledge and understanding of the topic 2 content (Biological molecules) of the CIE International A-level Biology specification. This topic isn’t always well understood by students so the lesson has been designed to include a wide range of activities that include differentiated exam questions, quick tasks and quiz competitions which will engage the students whilst they assess their progress. It has been designed to cover as much of the specification as possible but the following sub-topics have received particular attention: Formation of polysaccharides by glycosidic bonds between monomers Recognising monosaccharides, disaccharides and polysaccharides The structure of starch and glycogen in relation to their function as stores and providers of energy Water as a solvent with a high specific heat capacity and a high specific latent heat of vaporisation Structure and bonding in proteins The structure of globular and fibrous proteins as demonstrated by haemoglobin and collagen The structure and function of cellulose Links are made to other topics so that students are able to see how questions can include parts from different Biological concepts.
Introduction to gene mutations (CIE International A-level Biology)
GJHeducationGJHeducation

Introduction to gene mutations (CIE International A-level Biology)

(2)
This detailed lesson has been written to act as an introduction to gene mutations and the potential effects on the polypeptide chain. The engaging PowerPoint and accompanying resources have been designed to cover point 6.2 (b) and © of the CIE International A-level Biology specification and explores how substitution, insertions and deletions can change the primary structure. The lesson has been written to tie in with previous lessons where the genetic code was introduced and students will be challenged to describe how the degenerate nature of the code means that a substitution mutation doesn’t always lead to a change in structure. As detailed in point ©, students will learn how a single change to the primary structure of the HBB gene results in abnormal haemoglobin and they are challenged to recall knowledge about the structure and function of haemoglobin whilst completing a detailed passage about sickle cell anaemia. Time is also taken to look at changes to the structure as a result of frameshift mutations and this is related to the non-overlapping code. This topic is met again in topic 16 so this lesson has been designed to act as an introduction before greater detail can be added
Interphase, mitosis & cytokinesis (CIE A-level Biology)
GJHeducationGJHeducation

Interphase, mitosis & cytokinesis (CIE A-level Biology)

(1)
This lesson describes the key events that occur during interphase, mitosis and cytokinesis in the eukaryotic cell cycle. The PowerPoint and accompanying resources have been designed to cover point 5.1 [c] of the CIE A-level Biology specification and challenges the students on their knowledge of chromosomes from an earlier lesson as well as preparing them for upcoming lessons on the main stages of mitosis and its significance in life cycles The students were introduced to the cell cycle at GCSE so this lesson has been planned to build on that knowledge and to emphasise that the M phase which includes mitosis (nuclear division) only occupies a small part of the cycle. The students will learn that interphase is the main stage and that this is split into three phases, G1, S and G2. A range of tasks which include exam-style questions, guided discussion points and quick quiz competitions are used to introduce key terms and values and to describe the main processes that occur in a very specific order. There is also a focus on the checkpoints, such as the restriction point that occurs before the S phase to ensure that the cell is ready for DNA replication. Extra time is taken to ensure that key terminology is included and understood, such as sister chromatid and centromere, and this focus helps to show how it is possible for genetically identical daughter cells to be formed at the end of the cycle. Important details of mitosis are introduced so students are ready for the next lesson, before the differences in cytokinesis in animal and plant cells are described.
Absorption in the ileum (AQA A-level Biology)
GJHeducationGJHeducation

Absorption in the ileum (AQA A-level Biology)

(0)
This lesson describes the mechanisms by which the products of digestion are absorbed by the cells lining the ileum. The PowerPoint and accompanying resources are part of the second lesson in a series of 2 which cover the content detailed in point 3.3 of the AQA A-level Biology specification and focuses on the relationship between the structure and function of this section of the small intestine. This lesson has been specifically planned to challenge the students on their understanding of digestion in the mouth, the stomach and the duodenum as covered in the previous lesson and to build on this knowledge to allow them to recognise how the products of digestion are then absorbed in the ileum. Time is taken to describe how the folds of the ileum known as villi and the multiple microvilli found on each villus act to significantly increase the surface area for absorption and the adsorption of enzymes. The mechanism of co-transport was described in topic 2.3 so a series of exam-style questions are then used to check that the students can explain how these proteins are used to absorb monosaccharides and amino acids from the ileum. The remainder of the lesson explains why the formation of micelles is critical for the absorption of monoglycerides and fatty acids
Spearman's rank correlation (CIE A-level Biology)
GJHeducationGJHeducation

Spearman's rank correlation (CIE A-level Biology)

(1)
This lesson describes how to use the Spearman’s rank correlation to analyse the relationships between the distribution of species and abiotic and biotic factors. The PowerPoint and accompanying exam-style question are the first lesson in a series of 2 which have been designed to cover point 18.1 (e) of the CIE A-level Biology specification and challenges the students on their knowledge of the t-test as covered in topic 17 as well as preparing students for the next lesson on the use of the Pearson’s linear correlation formula. As with the lessons on the t-test and Simpson’s index of diversity, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question which assesses whether there is a relationship between light intensity and % plant cover in a habitat. The mark scheme is displayed on the PowerPoint so the students can assess their understanding and address any misconceptions that may arise
Mitosis and Meiosis REVISION (AQA GCSE)
GJHeducationGJHeducation

Mitosis and Meiosis REVISION (AQA GCSE)

(0)
Students commonly confuse the two forms of cell division, so this revision lesson has been designed to address those mistakes and misconceptions. The PowerPoint and accompanying resources have been planned to challenge the students on their understanding of the details of points 1.2.1, 1.2.2 and 6.1.2 of the AQA GCSE biology and combined science specifications. The lesson goes through each of the three stages of the cell cycle including mitosis, to ensure that students can describe the key events and state the outcome in terms of the daughter cells. The lesson contains a series of tasks which include exam questions, discussions and a quiz which allow the students to assess their understanding. The final part of the lesson focuses on meiosis and specifically the differences to mitosis in terms of the number of cell divisions, the gametes formed, and their genetic make up. This lesson has been designed to be used for revision purposes in the lead up to the GCSE exams or in preparation for an end of topic test or mocks.
The importance of water (Edexcel A-level Biology A)
GJHeducationGJHeducation

The importance of water (Edexcel A-level Biology A)

(1)
Water is very important for living organisms because of its numerous properties and this lesson focuses on its role as a solvent in transport. The engaging and detailed PowerPoint and accompanying worksheet have been designed to cover point 1.2 of the Pearson Edexcel A-level Biology A specification and also explains the importance of the dipole nature for this role in transport. A mathematical theme runs throughout the lesson as students have to match the numbers calculated in the starter task to water statistics, such as the percentage of the volume of blood plasma that is water. This has been included to try to increase the relevance of each property so that it can be described in a biological context. Time is taken at the beginning of the lesson to describe the structure of water in terms of the covalent bonds between the oxygen and hydrogen atoms as well as the hydrogen bonds which form between molecules because of its polarity. Students will understand how water is a solvent which means that it is critical for transport in animals, a topic covered in the next few lessons but also for transport in plants as discussed in topic 4. The high heat capacity and latent heat of vaporisation of water is also discussed and explained through the examples of thermoregulation and the maintenance of a stable environment for aquatic animals. The final part of the lesson focuses on the involvement of water in condensation and hydrolysis reactions, two reactions which must be well understood for topic 1 and 2 and the formation and breakage of polysaccharides, lipids, polypeptides and polynucleotides.
Edexcel GCSE Physics EQUATIONS REVISION
GJHeducationGJHeducation

Edexcel GCSE Physics EQUATIONS REVISION

(1)
This detailed and engaging lesson has been written to challenge the students on their recall and application of the 22 equations which they have to know for the AQA GCSE Physics exams. The lesson is designed to not only check that they know these equations but also on their ability to rearrange formulae when required and to convert between units. The main task of the lesson consists of 13 exam-style questions which challenge 12 of these recall equations and then an engaging quiz competition and class discussions are used to identify the other 10. Students are guided throughout the lesson in the use of the mathematical skills and are shown examples to aid their progress. This lesson has been designed to tie in with the other 12 uploaded revision lessons which cover the content of the topics on the Edexcel GCSE Physics specification
Control of blood glucose concentration (AQA GCSE Combined Science FT)
GJHeducationGJHeducation

Control of blood glucose concentration (AQA GCSE Combined Science FT)

(3)
This lesson has been designed to cover the detail of specification point 4.5.3.2 of the AQA GCSE Combined Science FOUNDATION TIER which states that students should be able to describe how the body detects and responds to an increase in blood glucose concentration. A considerable amount of time has been taken in the planning to ensure that the wide range of activities engages and motivates the students but that the key details are covered and understanding is checked and checked again. The start of the lesson uses a range of prior knowledge checks and quiz competitions to answer the questions of what actually is glucose and why is it so important that the levels in the blood are controlled. Students are then introduced to glycogen and the fact that this carbohydrate can be stored is reiterated so that they can recognise how glucose must be converted into this substance to lower the blood concentration. Again, a quiz round is used to get them to recall that the pancreas will be the receptor and the liver will act as the effector. The main task of the lesson involves the formation of a bullet point answer where students are challenged to use the information from earlier in the lesson to complete this description.
Radiation REVISION (AQA GCSE)
GJHeducationGJHeducation

Radiation REVISION (AQA GCSE)

(0)
This engaging revision lesson uses a range of tasks to allow students to check their understanding of radioactive decay and nuclear radiation. The PowerPoint and accompanying resources have been designed to challenge the detail of point 4.2 of the AQA GCSE physics and combined science specifications and the following sub-topics are covered: Properties of alpha, beta and gamma Bq as the unit of radioactivity Detecting sources of radiation based on their penetrating power Half-life Decay equations Changes to the mass and charge of the nucleus after decay
Eukaryotic and prokaryotic cells (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Eukaryotic and prokaryotic cells (Edexcel GCSE Biology & Combined Science)

(1)
This fully-resourced lesson has been written to cover the content as detailed in specification point 1.1 (Sub-cellular structures of eukaryotic and prokaryotic cells) of the Edexcel GCSE Biology & Combined Science specifications. The lesson includes a detailed and engaging PowerPoint (63 slides) which contains a wide range of activities, each of which has been designed to motivate the students whilst covering the content in detail. At the completion of the lesson, students will know the sub-cellular structures that are found in bacterial, animal and plant cells and understand how the presence of these structures relates to the function of these cells. Understanding checks are written into the lesson at regular points so that students can constantly assess their understanding of this specification point and quiz competitions like “FROM NUMBERS 2 LETTERS” and “THE BIG REVEAL” introduce key terms to the students in an interesting and memorable way. This lesson has been designed for GCSE-aged students studying the Edexcel course but is also suitable for younger students who want to learn about cells in more detail at KS3.