Hero image

SWiftScience's Shop

Average Rating4.24
(based on 769 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

837k+Views

475k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
OCR GCSE (9-1) Biology - Reflexes
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - Reflexes

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. Pupils will start the lessons by considering why a reflex action is important to living organisms and asking pupils to consider any examples they can think of. After revealing the importance of reflex actions and come examples, the slides then move on to look at the pathway an electrical impulse takes along a reflex arc. Pupils will delve a little deeper into this by watching a video, during which they can answer questions. Once this has been completed they can self-assess their work using the answers provided. This process can also be summarised using a copy and complete exercise. Next, the lesson focuses on synapse, a diagram of a synapse is shown with key details labelled, there is also a link to an animation that can be shown to demonstrate what occurs at the gap between neurons. After this has been demonstrated pupils are then asked to complete some tasks to show their understanding of what occurs at a synapse. The next activity involved a set of statements which are muddled up, pupils need to put them into the correct order to correctly describe the steps involved with a reflex arc. Once this has been completed pupils can assess their work using the model answer provided. The final activity is a past-paper question which can be printed for pupils or they can complete in their own books, this needs to be self or peer assessed once complete. The plenary task is for pupils to pick a task - either to summarise the work from the lesson using a list of key words or for pupils to come up with questions for the list of answers that are provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
OCR GCSE (9-1) Biology - The human nervous system
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The human nervous system

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. This lesson begins by looking an organism - a cat- and asking pupils to think about the types of stimulus the cat might respond to in it’s environment, plus which organs it needs to sense these stimuli. Pupils will brainstorm their ideas and then self-assess their work once the answers are revealed, additionally they will answer an exam question on this topic. Next, pupils focus on the effectors and their role in the nervous system. Pupils will be provided with a description of the role of muscles and glands as effectors and will then need to complete an exam question to assess their knowledge, mark scheme provided for either peer or self-assessment. The next part of the lesson will focus on neurons, firstly a diagram of a neuron cell is shown and pupils need to think about how this cell is similar and different to a normal animal cell. Pupils may discuss this in pairs and try and come up with an answer before the mark scheme is revealed. Sensory and motor neurons are now introduced via an animation, pupils can look at the pathway the electrical impulse travels as it moved around the nervous system. Pupils will use this to then copy and complete a summary to describe this process, when completed this can be self-assessed. The final activity is for pupils to copy and complete a table to sum up the main functions of each part the human nervous system either by using a card sort or by putting the statements on the board. This can then be peer or self-assessed when complete The plenary activity is for pupils to summarise the 5 main key words they have learnt that lesson. All resources are included at the end of the presentation. Thank you!
OCR GCSE (9-1) Biology - The brain
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The brain

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. The lesson begins with an overview of the function of the four main lobes of the brain, pupils will be given cards of information which they need to use to complete a table on these functions. Pupils will then be introduced to further structures which they are required to know the functions of: medulla, cerebellum, hypothalamus and cerebral cortex. Pupils will need to use posters to complete a worksheet where they label a diagram of the brain and outline the roles of each of these structures. Following this is a card sort where pupils can assess their understanding of what they have just learnt. The next part of the lesson focuses on how scientists and doctors have gained evidence for the structure and function of the brain. Firstly students will watch a video and answers questions on Phineas Gage, which can be self-assessed once complete. This will then go on to describe the role of electrical brain stimulation and MRI scans in providing knowledge about the brain. This is assessed with a copy and complete summary sentence task and finally the plenary is a 6-mark exam question. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Co-Transport & Absorption of Glucose in the Ileum
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Co-Transport & Absorption of Glucose in the Ileum

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on co-transport and absorption of glucose in the ileum begins with a starter discussion which asks students to compare and contrast transport and diffusion. They are also asked to discuss the importance of transport rather than diffusion in regard to reabsorption in the kidneys. The first task is a microscope activity for students to work in partner pairs and investigate adaptations of the epithelial cells of the ileum. Students will set up their light microscope to examine prepared slides and answer some questions. Answer samples are in the notes below the slides. The following slides define villi and microvilli for students to note in their books. There is a brief explanation of the relationship between increased surface area and space for carrier proteins. Students are then introduced to the role of diffusion in absorption and should take clear notes regarding facilitated diffusion. They should use the diagram on the slide to discuss why glucose concentration differs between epithelial and ileum cells. Relying on diffusion will only result in the concentrations either side of the intestinal epithelium becoming equal. Students should discuss why this is a problem, and how it might be overcome. The next slide is a complete diagram explaining co-transport of amino acids or glucose molecules. Students should take notes in their books because the next task is to complete a cartoon of this process and summarise the main steps. Students are then asked to ‘think > pair > share’ about the co-transport process and decide whether it is a direct or indirect form of active transport. They should use the details on the slide to inform their discussion. The final task is an exam-style question, with a mark scheme on the following slide for students to self-assess and consolidate their learning from this lesson. The plenary task is to either; summarise the lesson in three sentences, or complete definitions for five key-terms from the lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Microscope Measurements
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Microscope Measurements

(1)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a little challenge for students to calculate the actual size of a specimen and complete three measurement conversions. The first outcome is for students to begin to understand graticules and their use. The following slides define eyepiece graticules and explain how to calibrate the eyepiece properly. Students will also watch a short video before working though example (b). Students will then practice calculating magnification to understand the relationship between the eyepiece graticule scale and the stage micrometer scale. To practise their learning students will complete the Calibrating an Eyepiece Graticule worksheet. The next task is to practise calibrating the eyepiece and measure three onion cells. Students will also be asked to complete a biological drawing of their onion cells, and examples of poor and quality drawings are provided in the slides with more detailed expectations. Students will then consolidate their learning by completing an exam-style question, answers are provided on the following slide for self-assessment. The plenary task is a quick exit card, students should write thee things they’ve learnt, five key words, and on question for their peers about this lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
OCR GCSE (9-1) Biology - Reaction Times Investigation
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - Reaction Times Investigation

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. This lesson begins by pupils being provided with the aim of the investigation plus an equipment list, pupils will need to use this to decide what the independent, dependent and control variables of the practical may be. The next slide runs through some of the important details of the practical, using this pupils will then need to write a step-by-step method summarising how they are planning to conduct their investigation, they can work in groups to plan this but must complete their own worksheet. Next, pupil will conduct the experiment to measure the effect of a distraction on student volunteers reaction time. Results should be collected using the worksheet provided, once they have collected their raw data they can use this (as well as the calculation provided) to work out the reaction time for each volunteer in each trial, and a mean can be calculated. Once the second table of results on the calculated reaction times have been filled in pupils can complete their graph of results, this can then be used to write a conclusion using prompt questions provided on the plenary slide of the PowerPoint presentation. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
OCR GCSE (9-1) Biology - The Eye
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The Eye

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. The lesson begins with a recap on the difference between a stimulus and a receptor and asks students to think>pair>share what the function of photoreceptors might be and where they are found. Pupils are then shown a diagram of an eye, pupils are asked to consider (from a list of structures provided) which labels might go where, they can discuss in pairs and annotate their own diagram if they know for sure. Pupils can then assess their own work when the answers are revealed on the next slide. Pupils must now learn the functions of each of these structures, they will each be given a slip of information about the function of one part of the eye and they should walk around the room and share their information to complete the table in their books. This task can be self-assessed using the answers provided. The next part of the lesson focuses on the pupil reflex, firstly a practical is undertaken whereby pupils block out light from the room and then observe what happens to their partners pupils when they bring a torch to the side of their partners eye. This leads into a description of the pupils reflex, including the role of the circular and radial muscles. Pupils will need to summarise this information by copying and completing the sentences into their book, which can be self-assessed once completed. The last activity is looking at how light is focused on the retina by the lens, pupils are shown a diagram of how this works. After being given a verbal description they are asked to firstly copy the diagram complete with labels and explain how light is focused on the retina using a list of key words that are provided. The plenary task is an exam question on what the students have learnt this lesson, pupils should complete this in silence in their books and then red-pen their work using the mark scheme provided once they have finished. All resources are included at the end of the presentation. Thanks for looking :)
NEW (2016) AQA AS-Level Biology – Mitosis
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Mitosis

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on mitosis begins with a review of cells, viruses, and a discussion about the differences between mitosis and meiosis. To begin discussing mitosis, students will watch a short video describing the cell cycle and make notes on a worksheet. They can self-assess with the following slide and discuss any missing information. The next few slides are lecture style, they teach chromosome structure and define mitosis. Students should answer the discussion question “why is mitosis such an important process in organisms?” To check their discussion, points to note can be found in the ‘notes’ section under the slide. The lesson then defines each phase of mitosis before asking students to complete a jumbled sentence activity to synthesise their notes on the phases. The worksheet features jumbled sentences, and diagrams of the phases of mitosis for matching. The un-jumbled sentences are in the following slide so students may self-assess their worksheets. The next section defines cytokinesis in plant and animal cells then asks students to identify the stages of mitosis by microscopic images. They should give reasons for their choices and the answers can be found in the ‘notes’ part of the slideshow. This activity is built on through a mini-whiteboard activity in which students should identify the stages of the cell cycle and explain what is happening during this stage. The lesson ends with an exam style question which asks students to explain how mitosis leads to two identical cells. A mark scheme for this question is on the following slide. The plenary task is to complete a sentence in their book reflecting on their learning throughout the lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS Biology – Gas Exchange in Single-Celled Organisms and Insects
SWiftScienceSWiftScience

NEW (2016) AQA AS Biology – Gas Exchange in Single-Celled Organisms and Insects

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Organisms & their Environment’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins by reminding students of the four general things that need to be exchanged between an organism and their environment and the three factors which may affect the rate of diffusion. This discussion leads into the first few slides which explain how an organism like an amoeba gets the substances it needs. A worksheet is included for this lesson for students to complete as they take notes throughout. An amoeba is used as an example of a unicellular organism, which is then compared to insects. The following slides explain the basic form and function of insects, then the process by which they exchange water and O2. Students should take thorough notes on the spiracle, trachea and tracheoles in their books. The slides in this lesson are lecture based and very detailed, students will want to be sure they have a good understanding of the three ways that respiratory gasses move in and out of the tracheal system. The slides explain that gasses move along a diffusion gradient, through mass transport, and as the tracheoles fill with water. A quick check of exam-style questions and mark scheme follows to help students assess their learning. The plenary task is a true or false activity! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS Biology – Cell Specialisation & Organisation
SWiftScienceSWiftScience

NEW (2016) AQA AS Biology – Cell Specialisation & Organisation

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on cell specialisation and organisation begins with a discussion to review specialised cell examples. Students should also describe the difference between smooth and rough endoplasmic reticulum, as well as the role of chloroplasts. To review organelles, students are then given a matching worksheet with descriptions of nine organelles. They can check the names of each with the answers on the slide. This task leads them to a series of organelle images to label and check as well. Students are then tasked with past-paper questions to check their understanding of cell structure. A mark scheme is on the next slide. To begin the discussion of cell specialisation students are tased with a worksheet to try with a partner. The worksheet asks students to consider what information each organelle can tell us. Suggested answers are on the following slides. The lesson should then spark some conversation about the organisation of certain cells, before students work through a few slides of questions about cell organisation in general. After learning the levels of cell organisation students are led through a few examples to decide for themselves which level each example fits in. To synthesise their learning, students will work through a ‘cut & stick’ task to create a table of each cell type and its characteristics. A completed table is on the following slide so students may self-asses. The plenary for this lesson is to write three sentences in their book summarising what they’ve learned! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Water
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Water

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a review discussion of ATP as an energy source and its role in plant cells. The next few slides are lecture-style and designed to teach students the properties of water as a biological molecule. The notes underneath the slides also offer some answers to the discussion questions on the slides. Students are then given a four question ‘quick check’ to demonstrate their understanding so far. They should answer in their books and self-assess or check a partner’s work with the answers on the following slide. Then students will each be given a reason why water is important; the two reasons can be found as descriptions at the end of the slideshow. Students should teach a partner with the opposite reason, then make notes in table form in their books before moving to the next slide which is a quick explanation of inorganic ions. As a summary test, students are given two questions, the first of which includes a few sub-questions. Students should answer independently in their books then self-assess with the answers on the following slide. This is a good opportunity to answer any other questions! The plenary task is to explain what they have learned through three facts, three key words, and a question to test their peers on. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Eukaryotic Cell Structure
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Eukaryotic Cell Structure

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a starter discussion to review materials from the ‘biological molecules’ module. Students are then asked to begin thinking about types of cell by having a ‘think > pair > share’ discussion to define eukaryotic cells and their features. They can compare their answers to the diagram on the next slide which outlines of the main features of eukaryotic cells. The first task of this lesson is for students to fill in their worksheet using information cards about each organelle. Students should synthesise the information, not just copy it into their worksheet. The worksheet and information cards are available at the end of the slideshow. Using their mini whiteboards students are then guided to identify some photomicrographs from scanning and transmission electron microscopes. They should identify if the photomicrograph was taken by a scanning or transmission electron microscope, and bonus points if they can name the organelle! Students are then given another worksheet task to fill in the blanks and can self-assess using the following slide. The plenary task is to write a tweet about what they’ve learned! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Diffusion
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Diffusion

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on diffusion begins with a starter discussion to remind students of the functions of the proteins in the cell membrane and the ‘fluid-mosaic’ model. Students will then ‘think > pair > share’ to discuss what sorts of substances cells import/export across the cell membrane. They should also examine why the cells import/export these substances. Answers are on the slide for self-assessment. Diffusion is then laid out in two diagrams to explain the passive nature of diffusion. Students should use these diagrams to inform the next ‘think>pair>share’ and discuss with a partner what factors might affect the rate of diffusion. Students are then introduced to facilitated diffusion, and the proteins required. They should take detailed notes on the features and functions of channel proteins and carrier proteins. Another form of facilitated diffusion is then introduced, in which the carrier protein picks up molecules of a matching shape, rather than changing its own shape. To quick check student understanding, they are asked three questions to answer in their books regarding the two forms of facilitated diffusion in comparison to simple diffusion, answers are provided on the next slide for self-assessment. Students will then complete an exam-style question, as always, a marking scheme is available for self-assessment. The plenary is a WhatsApp message task for students to draft a message to a friend, telling them what they’ve learned this lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS Biology – The Human Gas Exchange System
SWiftScienceSWiftScience

NEW (2016) AQA AS Biology – The Human Gas Exchange System

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Organisms & their Environment’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on the human gas exchange system begins with a review of gas exchange in plant leaves and insects, and the adaptations each have made in order to reduce water loss. The first task is to fill in the blanks in a paragraph describing gas exchange in mammals, particularly humans. Answers are on the following slide for self-assessment. Students are then introduced, slide by slide, to the features of human’s gas exchange system including the nasal cavity, trachea, bronchus, bronchioles and alveoli. Each slide has a diagram, description of the feature, and explanation of its role in gas exchange. The next task is to list the features of the efficient gas-exchange system in humans, at the epithelium of the alveoli. The adaptations of the alveoli are then expanded upon over the next few slides. Students will use the included worksheet to describe the on the ways which surface area, a permeable barrier, a thin barrier and maintenance of diffusion gradient make for efficient gas exchange. The plenary for this lesson is an anagram challenge! Students can uptake an extra challenge and define each unscrambled word as well. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
OCR GCSE (9-1) Biology - Factors affecting photosynthesis
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - Factors affecting photosynthesis

(0)
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway) Biology 'Cell-level lsystems’ scheme of work. The lesson begins by students thinking about the raw materials needed for plants to photosynthesise and which factors might limit the rate. The three factors which students will need to learn about are then revealed - carbon dioxide, light intensity and temperature. Three limiting factor graphs are then shown for each of these factors and students need to have a go at explaining what the graphs are showing, as a class discussion. Pupils will then need to complete a fill-in-the-blank task and self- their assess their work using the answers provided. Next pupils are shown a green leaf and a variegated leaf and are asked to think>pair>share which leaf they believe will have a higher rate of photosynthesis, and why. This then leads to pupils learning that less chlorophyll means less photosynthesis will take place, which could lead to stunted growth. The next part of the lesson focuses on pupils being able to use practical equipment to set up an investigation which measure the effect of light intensity on rate of photosynthesis. Pupils will firstly be given some images of equipment they could use and are asked to come up with a potential method for this investigation. After this pupils are then shown a video where they have to answers questions about the variables in this investigation. The plenary is a silent 5 task where pupils need to answer questions about what they learnt this lesson on their own in their books. All resources are included in the PowerPoint presentation, thank you for purchasing :)
OCR GCSE (9-1) Biology - Enzyme & Enzyme Reactions
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - Enzyme & Enzyme Reactions

(0)
This lesson is designed to meet specification points for the NEW OCR GCSE (Gateway) Biology 'Cell-level systems’ SoW. For more lessons designed to meet specification points for the NEW Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by pupils being introduced to what an enzyme is, what it looks like and it’s role in the body. Pupils will then watch a video and will need to answer questions (provided) whilst watching the video, they can self-assess their work using the answers provided. Next pupils are shown a diagram of an enzyme’s lock & key mechanism in action, they will need to draw their own diagram of this process and include labels to show what is happening. Next, pupils are introduced to the factors that can affect the rate of enzyme action. They are given a set of data on how temperature affects the rate of reaction. Pupils will need to plot this data onto a graph, they are then given a set of labels which they will need to match to certain points on their graph to describe what is happening. In the next task pupils will need to complete sentences to explain the data that the graph is displaying, pupils can self-assess their work using the answers provided. The very last task requires pupils to look at the effect of pH on the rate of enzyme action, pupils will need to think about the pH needed for enzymes in the stomach to work. They can discuss this question or come up with an answer themselves. The plenary task is a fill-in-the-blank task for pupils to complete in their books, this can be self-assessed using the answers provided. Any questions please let me know by leaving a comment, and any feedback is much appreciated :)!
OCR GCSE (9-1) Biology - Anaerobic Respiration
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - Anaerobic Respiration

(0)
This lesson is designed for the NEW OCR GCSE (Gateway) Biology, ‘Cell-level systems’ SoW. For more lessons designed to meet specification points for the NEW GCSE specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Firstly pupils are asked to consider why organisms may not be able to continuously carry out aerobic respiration. They can discuss in pairs and then as a class and be introduced to the idea of anaerobic respiration. They will fill then complete a fill-in-the-blank task to sum up this process. Pupils will then watch a video where they will answer questions about anaerobic respiration, their answers can be checked against the mark scheme provided. Now pupils are introduced to the idea of oxygen debt, they are given an information card in pairs (for lower ability classes you may want to tag read this as a class) and then pupils will need to answer questions about this information. They can talk about in partners, once finished they can self or peer assess their work. Finally the different products of anaerobic respiration that are made in different organisms are highlighted, it is touched upon in the video but this is clear slide to show anaerobic respiration in plants, bacteria and yeast. Pupils will complete some exam-style questions to assess their knowledge of this topic, can be answered in the back of their books to fully test them! Pupils can then mark their own work using the mark scheme provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Prokaryotic Cells & Viruses
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Prokaryotic Cells & Viruses

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on prokaryotic cells and viruses begins with a starter discussion regarding the tissue of the stomach, and the difference between prokaryotic and eukaryotic cells. Students should then work to fill in a table to recap the organelles of eukaryotic cells and their functions, in their notes. The following slides introduce students to the features and content of prokaryotic cells, with a little memory test to help them label cell contents. Students can then self-assess against the slide before they move on to the next task where they will match cell structures to their role in the cell. The next task is a ‘think>pair>share’ to compare and contrast prokaryotic and eukaryotic cells. Student partners can then work together to compare and contrast on a worksheet table and self-access. Moving on to viruses! Students are asked to think and discuss the structure and function of viruses. They will also be asked to determine their confidence level for each of the outcome of the lesson by highlighting, in order to check their understanding. In order to learn about cell division in prokaryotic cells students are then asked to use an animation to help them draw a simple diagram of binary fission in their books. They are then asked to watch a short video explaining the rate of division and then calculate the rate of division for each hour for eight hours. Another video is included to help students complete a ‘fill in the blank’ passage about the replication of viruses, they can self-assess their passage on the following slide. A past-paper question is also included for students to check their understanding of the lesson, they can then self or partner-assess their work. As a plenary task, students should complete three sentences in their books describing what they have learned, what they already knew, and what they might like to learn more about. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Energy and ATP
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Energy and ATP

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a starter discussion to review the enzymes needed for DNA replication and the process of DNA replication itself. Students are then asked to make a list in their books of all of the biological processes that require energy. Students are then taught to think of ATP as an ‘energy currency’ and on the following slide asked to define the parts of the structure of ATP before reviewing ATP’s function. Students should use the ‘ATP handout’ to take notes. The next task asks students to answer a few questions on their mini whiteboards and discuss with a partner how ATP releases energy. Answers for self-assessment are on the next slide. The following slides explain the synthesis, roles, and properties of ATP. You will find further details for these slides in the ‘notes’ section under each slide. Students are then encouraged to ‘think > pair > share’ some ideas of why ATP’s properties might be useful to the role of ATP in cells. Answers for self-assessment are on the following slide. Students are then given an activity task to demonstrate knowledge of energy-requiring processes. Each student will be given a description of a process, these can be found at the end of the slideshow, there are five processes in total. Students should then work in small groups to teach each other the different processes and produce a table to represent what they’ve learned. After completing the lecture and tasks students are given four summary questions to answer in their books and self or partner-assess. Students should then make note of the summary slide before concluding the lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Humoral Immunity & Antibodies
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Humoral Immunity & Antibodies

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on humoral immunity & antibodies begins with a starter discussion to get students to describe the role of cytotoxic t-cells, and the role of lysosomes during phagocytosis. They should also discuss the fate of cloned t-cells during a cell-mediated immune response. Humoral immunity is defined first, and students are asked to consider why the term humoral is used. Then, students will fill in gaps on their worksheet as humoral immunity is further explained. There are extra notes below the slide, and the answers will appear for self-assessment. The next slide sets out a diagram of humoral immunity, then students are asked to arrange the process by sequencing sentences, then self-assess. In pairs, students will then be given information on either plasma cells or memory cells and teach each other about the cell they’ve been assigned. Each student should complete descriptions of both types in their books. Students are then asked to consider why lymphocytes don not attack their own cells and taught the significance of lymphocytes development in the foetus. The next task is to sort information cards into categories; cell-mediated, humoral, or both. They can self-assess this task to the following slide. Students are then introduced to the structure of antibodies. They will watch a video, and answer seven questions, including a diagram. They can self-assess to the slide before considering how antibodies lead to the destruction pathogens. Students are also asked to consider why it is important that antibodies have two antigen binding sites. The plenary is to spend a full minute discussing with a partner what they have learned from this lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)