Hero image

SWiftScience's Shop

Average Rating4.24
(based on 769 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

836k+Views

475k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE (2016) Physics  - Alpha, Beta & Gamma Radiation
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Alpha, Beta & Gamma Radiation

(1)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a recap of the three main types of radiation: alpha, beta and gamma radiation. Students will firstly be asked to draw and label a diagram to show how each of these types of radiation can be stopped. Students will then be given some information about the penetrating power of these three types of radiation, using the information and their own knowledge students will need to complete a summary worksheet. Once this has been completed students can self-assess their work using the mark scheme provided. The next part of the lesson will focus on the dangers of radiation, firstly students will be shown a teacher/technician demonstration of the different types of radiation, outlining some of the dangers and precautions taken when handling radioactive sources. Students can complete a table of information on the relative dangers of these radioactive sources whilst watching the demo. This work can self-assessed against the mark scheme provided once it is complete. Next, pupils are asked to ‘Think > Pair > Share’ ideas about how scientists/workers can protect themselves against the hazards of ionising radiation. After a short class discussion the answers can be revealed for students to check their work and take extra notes if necessary. Lastly, students are asked to think about the uses of radiation, they will be given a list and they will need to determine which are real uses of radiation. The real uses of alpha, beta and gamma radiation can then be revealed on the PowerPoint presentation - students can check their answers and take notes on extra uses. The plenary task is for students to talk to the person next to them for one minute about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Forces Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Forces Homework

(1)
This homework activity is designed for the KS3 Science Course, specifically Year 7 P1.1 Module on ‘Forces’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
KS3 ~ Year 7 ~ Sound Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Sound Homework

(1)
This homework activity is designed for the KS3 Science Course, specifically Year 7 P1.2 Module on ‘Sound’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics  - Resistance & Potential Difference
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Resistance & Potential Difference

(1)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a defintion of resistance, using diagrams to demonstrate the effect of a high resistance on the current flowing around an electrical circuit. Students will then need to summarise this information by completing a ‘fill-in-blank’ task, which can then be marked using the mark scheme provided. The next part of the lesson asks students to consider the effect of the thickness of the wire on resistance in a circuit. Students can ‘Think > Pair > Share’ their ideas before watching a video which reveal the answer, after students have watched the video they can summarise the main points by completing a ‘Fill-in-the-blank’ task. This task can then be self-assessed using the mark scheme provided. Next, students are introduced to the calculation for resistance (R = V/I), pupils can copy the formula triangle down into their books before being given set of problems to work through. Students should make sure to show all their working in their books and include the correct units, pupils can then self or peer assess their work using the mark scheme provided. The next part of the lesson focuses on potential difference and resistance, students will be given a set of information about potential difference and resistance, using which they will need to answer a set of questions. The mark scheme for this work is provided in the PowerPoint presentation so students can self-assess their work once complete. The last part of the lesson focuses on ‘Ohm’s Law’, students are firstly shown a circuit by which you can determine how the current across a wire is dependent upon the potential difference across that wire and also a graph to prove that current is directly proportional to the potential difference. Students will be given a set of data to plot, using the graph they have plotted they will then answer a set of questions. The plenary task is an anagram challenge of key words from the ‘Electricity’ unit so far! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Appliances & Efficiency
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Appliances & Efficiency

(1)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a recap on the calculations that students have learned so far in this topic, students are asked to ‘Think > Pair > Share’ their ideas about the calculation needed to work out the energy transferred to an appliance and the power supplied to an appliance. The answers can then be revealed and students will need to complete a set of questions on a worksheet, this task can be self-assessed using the mark scheme provided. Next, students will watch a video on ‘efficiency’ and whilst watching they will need to answer a set of questions, this work can then be self-assessed using the answers provided. Next, pupils will need to rearrange the equation for efficiency in order to work out the output power of an appliance and using this they will answer a set of questions. The mark scheme for the first part of the questions are included in the PowerPoint so students can assess their own work. Pupils will now be given a set of problems to work through, using the efficiency calculations they have just learned, if they finish the questions on the PowerPoint slide there is a separate worksheet of problems that pupils can work their way through. The mark scheme for the first set of questions is included in the PowerPoint for pupils to self-assess their work. Next, students will be shown how electrical appliances lose waste energy, from this information students will need to summarise using a fill-in-the-blank task. Again, the answers for this task is included in the PowerPoint for students to either peer or self-asses their work. The plenary task is an anagram challenge, pupils will have to unscramble a 6 words which all relate to the ‘Electricity’ topic. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Loudness & Pitch
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Loudness & Pitch

(1)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P2 ’Sound’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction into how sound can be ‘seen’ by using an oscilloscope. The PowerPoint then moves on to look at the differences between the ‘intensity’ of a sound and the ‘pitch’ of the sound. Students can copy and complete a set of sentences to summarise what they have learned so far as part of a ‘progress check’ - this work can then be marked using the mark scheme included. Students will then be given two different sound waves, they will need to use what they have learned so far to write a description/comparison of each of the waves, a list of key words will be provided to hep students. A model answer to this question is included in the PowerPoint so students can self-assess their work once it is complete. Students will now be given a worksheet of sound waves, along with a worksheet describing the sounds collected by the ‘Most Haunted’ team of a range of ghost sounds. Students will need to compare the description of the ghosts to the sound waves collected and match them correctly. This work can then be marked and corrected using the answers provided on the PowerPoint. Students will now think about the frequencies that humans can hear compared to other animals. The first activity requires students to watch a video which plays a set of sounds starting with a frequency of 500 Hz to 20,000 Hz. Students can put their hands up in the air until they can no longer hear the sound, you will need to turn the volume right up! Students are then told the audible range of humans compared to other animals like dolphins, hedgehogs and bats. The plenary activity requires students to complete a set of sentences, including outlining what they have learned today, what they already knew and what they would like to know more about. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Physics (2016) - Conservation of Energy
SWiftScienceSWiftScience

NEW AQA GCSE Physics (2016) - Conservation of Energy

(1)
This is a lesson which meets specification points for the new AQA 'Energy' module (2016). The lesson begins by considering whether a pendulum placed in a vacuum will carry on swinging, pupils can discuss their thoughts and there is a video which shows an experiment taking place with a pendulum placed in different mediums. Pupils can then draw a diagram to show the energy transfers taking place as a pendulum swings. Pupils are the introduced to the principal of the conservation of energy, they can write this definition down in their books. Pupils are then given a blank cartoon strip, pupils will need to complete the captions to describe the energy transfers taking place during a bungee jump and they can draw a diagram to represent what is happening for each caption. **This task could be difficult for lower ability students, you can provide the words that go in the blanks on the board for pupils who may struggle with his task.** The next slide has progress check questions for pupils to complete in their books, pupils can then peer-assess their work. **Slides 6-7, which contain additional tasks on the conservation of energy - a fill-in-the blank task & a word search - could be used as an alternative to the more difficult progress check questions for classes of lower ability, or could be used as an extra activity for higher ability classes** The plenary is a 3-2-1 task, pupils state 3 facts, 2 key words and create 1 question to test peers on the topic of the lesson. All resources for this lesson are found at the end of the PowerPoint.
NEW AQA GCSE (2016) Physics - Molecules & Matter
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Molecules & Matter

8 Resources
This bundle of resources contains 7 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Molecules & Matter’ unit for the NEW AQA Physics Specification. Lessons include: Density of Materials States of Matter Changes of State Internal Energy Specific Latent Heat Gas Pressure & Temperature Gas Pressure & Volume The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Physics - Radioactivity
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Radioactivity

8 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Molecules & Matter’ unit for the NEW AQA Physics Specification. Lessons include: Atoms & Radiation The Development of the Nuclear Model Radioactive Decay Alpha, Beta & Gamma Radiation Half-life & Radioactivity Nuclear Radiation & Medicine Nuclear Fission & Nuclear Fusion Dangers of Radiation The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
KS3 ~ Year 7 ~ Waves
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Waves

(1)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P2 ’Sound’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. Students will firstly be introduced to the main features of a wave - amplitude, frequency and wavelength. Students can sketch a diagram of a wave into their books and take notes on the main features. Students are now introduced to transverse and longitudinal waves, students will need to know the differences between the direction of the oscillations of these two waves. Students are then asked to discuss how a ‘slinky’ could be used to demonstrate these two waves, after a short class discussion students can be shown an animation to demonstrate how a slinky shows these two types of wave. Students will now get into groups and come up with a short role-play to demonstrate the differences between these two waves. Students will now complete a progress check where they will need to copy and complete a paragraph to summarise what they have learned so far this lesson. This task can then be self-assessed using the mark scheme provided. A diagram of a longitudinal wave which shows the differences between rarefactions and compressions is shown to students, they will then need to answer a set of questions. The answers to this task are included in the PowerPoint so students can self-assess their work once it is complete. Next, students will need to ‘Think > Pair > Share’ their ideas about what happens when two or more waves join together. Students can discuss their ideas first before being shown a video demonstrating the process of superposing waves. Students will then complete a fill-in-the-blank task to summarise what they have learned this lesson. The plenary task requires students to write a WhatsApp message to tell their friends what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Resultant Forces
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Resultant Forces

(1)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Forces in Action’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to force diagrams, students are given some information about how arrows can show the direction and size of forces acting upon an object. Students will then need to add force arrows to a diagram of a brick falling, this task can then be checked against the answer provided. Students are now shown a ‘Tug of war’ diagram, students are asked to ‘Think > Pair > Share’ their ideas about which side would win and why. After a short class discussion, students are now introduced to the idea of balanced and unbalanced forces, using ‘tug of war’ images as examples. Students are then given some information outlining how the motion of an object is affected by balanced/unbalanced forces acting upon it. Students will now complete a forces circuit to consider the type and size of forces acting upon different objects in the circus, students will need to identify the type/size of the forces and decide whether they are balanced or unbalanced. This task can be self-assessed once it is complete. Students will now be introduced to the definition of resultant forces, and will be shown some examples of how to calculate resultant force using ‘tug of war’ examples again. Students will now complete a couple of tasks to assess their knowledge of what they have learned so far on resultant forces, both tasks can be self-assessed using the mark scheme provided in the PowerPoint presentation. Lastly, students are shown how to draw ‘Free-body Force Diagrams’, an example is given before students are asked to draw their own onces using the two scenarios provided. The work can be marked and corrected using the mark scheme provided. The plenary task requires students to write a Whatsapp message to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW GCSE AQA Physics (2016) - Specific Heat Capacity
SWiftScienceSWiftScience

NEW GCSE AQA Physics (2016) - Specific Heat Capacity

(4)
This is a lesson aimed at the new Physics specification, it meets specification points within the 'Energy' module. Other lessons from the 'Energy' module can be found in my TES shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a word search that pupils can complete to identify key words related to this lesson. Pupils will then watch a video on specific heat capacity where they will need to identify the factors which may affect a materials SHC. Pupils are then introduced to the concept of specific heat capacity and you can work through model questions with students to demonstrate how to approach and answer questions (model questions included on the PowerPoint slides). Pupils then have a go at completing SHC capacity questions on their own, pupils can then self-assess their work. Next activity is a 'Cloze' activity where pupils need to copy and complete sentences, words are provided. Plenary - pupils are provided with a range of answers, they need to write questions which correspond to these answers. All resources are included in the PowerPoint presentation. Enjoy and if you have any feedback please leave a review :)!
NEW AQA GCSE (2016) Physics - Electrical Power & Potential Difference
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Electrical Power & Potential Difference

(2)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to power and what the power rating of an electrical appliance tells us about that appliance. Students are then asked to recap on their knowledge of power by trying to link together power, energy transferred and time in an equation (also in the ‘Energy’ topic). Once pupils have had a go at writing the correct equation, the answer is revealed in the PowerPoint presentation and students can then use this formula triangle to answer a set of questions. Once this task is complete students can then self-assess their working using the mark scheme provided. Students are now introduced to the calculation which works out the power supplied to an electrical appliance when given the current and potential difference. Students can make a note of this calculation in their books, complete the worked examples in their books and assess their answers. Next, pupils will be shown how you are able to decide which sort of fuse (3A, 5A, 13A) will be suitable for an appliance. Students are shown a worked example first, then they will be required to complete a ‘Quick Check’ task whereby students will answer questions based upon what they have learned so far this lesson. The mark scheme for this task is included in the PowerPoint so students can self-assess their work once it is complete. The last part of the lesson focuses on the relationship between current and resistance heating, pupils are shown another calculation which they are able to use to work out the power supplied to a resistor. Students will then be given a set of problems to work through, again assessing their knowledge of all they have learned this lesson. Students can then self-assess or peer-assess their work using the answers provided. The plenary task requires pupils to spend a minute talking to the person next to them about what they have learned. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Nuclear Radiation in Medicine
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Nuclear Radiation in Medicine

(3)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction which includes a brief outline of the various uses of radiation in medicine. Students will then watch a video on the uses of radiation in medicine, during the video they will need to answer a set of questions. This work can be self-assessed using the mark scheme provided once students have completed the task. During the next activity, students will each be given a card of information describing a use of radiation in medicine - radioactive tracers, gamma imaging, radiotherapy and radioactive rods. Students will need to share information with each other by walking around the room in order to complete a summary table for all the different uses. The mark scheme for this task in included in the PowerPoint so students can self-assess their work once it is complete. The next activity requires students to consider the benefits, risks and precautions of using nuclear radiation for medical purposes. Students will be given a card sort and they will need to determine if statements are referring to a benefit, risk or precaution. The answers to this task in included for students to self-assess or peer-assess their work. The last task is a ‘Quick Check’ activity, students will need to answer a set of questions using what they have learned this lesson. Once this task is complete students can self-assess their work using the mark scheme provided. The plenary task requires students to complete sentence starter, from the selection given, in order to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Energy Transfer: Conduction & Convection
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Energy Transfer: Conduction & Convection

(1)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy’. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with an introduction to conductors and the process of conduction. Students will be given a definition for each of these terms, they will then be asked to consider what some examples of good conductors and insulators are. The answer to these questions are then revealed, students can take notes in their books. Next, students are shown a diagram which demonstrates what happens to the particles within a solid when conduction occurs. Students are then asked to discuss ‘Why does conduction occur best in solid materials?’ - after a short discussion students will be shown the answer to this question so they can self-assess their work. Students will now complete an investigation to test different types of materials - copper, wood, iron, plastic & zinc - to see how well they conduct heat. Students should follow the method provided on the practical worksheet, they can record their results in a table in their books. The next part of the lesson focuses on convection, students will watch a video, during which they will need to answer a set of questions. This task can then be self-assessed using the mark scheme provided. Lastly, students are asked to draw a cross-section of a room in a house with a radiator on and show how a convection current might occur with the air particles in this room. This task can be assessed against the diagram provided in the PowerPoint presentation, once complete. The plenary task requires students to write down three facts, three key words and 1 question to test their peers knowledge of what they have learned this lesson. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics  - Current-Potential difference Graphs
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Current-Potential difference Graphs

(2)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to the term ‘Ohmic conductor’, students are also shown a current-potential difference graph for a wire to demonstrate that in an Ohmic conductor the current is directly proportional to the potential difference. Students will then conduct an investigation into whether the length of a wire will effect the resistance within the wire, students will complete the investigation using the method and once finished should draw a graph of their results and write a conclusion to summarise their findings. This work can be checked against answers provided within the PowerPoint presentation. Next, students are shown a current-potential difference graph for a filament lamp and a diode. Students will be given a graph along with a set of questions to answer about these two graphs, once this task is complete students can self-assess their work using the mark scheme provided. Students are then shown a diagram of a thermistor and light-dependent resistor and provided with an explanation of what happens to the resistance of these two components when the temperature and light are increased, respectively. The last task is a past-paper exam question, those higher-ability students should try and complete these questions without looking at their notes. Once complete, the work can be either self or peer assessed using the mark scheme provided. The plenary task requires pupils to complete one of the sentence starters to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Nuclear Fission & Nuclear Fusion
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Nuclear Fission & Nuclear Fusion

(2)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson with a ‘Think > Pair > Share’ task where students will consider what they think may be happening during a ‘Nuclear Fusion’ or ‘Nuclear Fission’ reaction. Once students have fed back as a class discussion, the definitions for each process can be revealed using the PowerPoint. Students will now watch a video outlining the basic principles of these two processes, whilst watching the video they will answer a set of questions. Once this work has been completed they can self-assess using the mark scheme provided. Next, students are shown a diagram of a chain reaction, students will need to sketch a cope of this into their books alongside an explanation of this process in context of nuclear fission. The next activity requires students, in pairs, to teach each other about the principles of a nuclear reactor vs. fusion reactor, after being given a set of information on the topic. Students will then need to answer a set of questions into their books about these two types of reactors, the work can be self-assessed using the mark scheme provided. Lastly, students will complete a radioactivity crossword based upon knowledge they have learned throughout the radioactivity topic, the answers to this task is also included so pupils can mark their own work. The plenary requires students to complete a set of sentence starters to summarise what they have learned this lesson, what they already knew about this topic before the lesson and what they would like to learn more about. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Potential Difference
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Potential Difference

(1)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’. This lesson begins with an introduction to potential difference, students will watch a couple of minutes of a video and whilst watching will need to answer a set of questions. This task can then be self-assessed using the mark scheme provided on the PowerPoint presentation. Next, students will be shown a circuit diagram, with two voltmeters connected - one parallel to a cell and one parallel to a light bulb. Students are asked to ‘Think > Pair > Share’ their ideas about whether the potential difference is higher across the battery or across the cell. Students will then carry out an investigation to find the answer the this question. After this, students will complete a fill-in-the-blank task to summarise what they have learned so far this lesson. Once complete student can self-assess or peer-assess their work using the mark scheme provided. Lastly, students will be given a set of questions relating to potential difference and also resistance, students will need to use what they have learned this lesson as well last lesson on resistance to complete these questions. This task can then be marked and assessed using the mark scheme provided. This is followed by a very quick anagram challenge, students will need to unscramble the anagrams to spell 6 key words related to the topic of electricity, students can write a definition for each key word if they have finished. The plenary requires students to write a twitter message, summarising what they have learned this lesson, including #keywords. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Charging Up
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Charging Up

(1)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with students being asked to ‘Think > Pair > Share’ their ideas about whether like and unlike charges attract or repel each other. After a short class discussion, students will feed their ideas back to the class and the answers can be revealed - like charges repel each other and unlike charges repel each other. Students are now introduced to the sub-atomic particles which make up an atom - protons, neutrons and electrons. From the description provided students will need to have a go at filling in the blanks on the diagram of the atom, once completed students can self-assess their work using the mark scheme provided. Next, students will complete a ‘Memory Test’ activity whereby a table of information is provided to students on the relative mass and charges of a proton, neutron and an electron. Students will be given a few minutes to observe and remember the information, then the table is taken away and students will need to recreate the table. The complete table is then shown to students so they can show mark and correct their work. Students will now complete a mid-lesson progress check to assess their knowledge of what they have learned so far this lesson, the mark scheme for this progress check is included in the PowerPoint so students can self-assess the work once complete. The next part of the lesson will focus on static charge, students will watch a video about this phenomenon and will need to answer a set of questions whilst watching. Once complete students can either self-assess or peer-assess their work using the answers provided. The last task students will need to complete is a fill-in-the-blank task, students can mark this task using the mark scheme provided. The plenary requires students to write a WhatsApp message to a friend, summarising what they have learned this lesson. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ The Earth
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ The Earth

(1)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P4 ’Space’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the idea of the Earth spinning on it’s axis, which gives us day and night. This is demonstrated to students using a diagram, they can take notes on this and also draw a sketch of the Earth spinning on it’s axis. Students will then watch a video on Earth and the way that it moves to give day/night and the different seasons. Students will answer a set of questions whilst they are watching the video, once complete the task can then self-assessed using the mark scheme provided. Next, students are shown a diagram which demonstrates the reason why in the summer the UK is hotter and longer days, whereas in the winter the UK is older and has shorter days. Again, students could take notes on this and sketch a diagram in their books to demonstrate this process. The next activity requires students to use an array of resources - beach ball, balloon, torch, marker pen - to demonstrate the orbit of the Earth around the Sun to explain why we have seasons. Students will now complete a worksheet which will assess their knowledge of what they have learned so far this lesson. The mark scheme for this task is included in the PowerPoint so students cans self-assess their work once it is complete. The last activity is a summary task, students should copy and complete the sentences to summarise what they have learned so far this lesson. The work can be self or peer assessed using the mark scheme provided once this students have completed it. The plenary activity requires students to write a Whatsapp message to a friend about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)