Hero image

SWiftScience's Shop

Average Rating4.24
(based on 769 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

836k+Views

475k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
KS3 ~ Year 7 ~ Waves
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Waves

(1)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P2 ’Sound’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. Students will firstly be introduced to the main features of a wave - amplitude, frequency and wavelength. Students can sketch a diagram of a wave into their books and take notes on the main features. Students are now introduced to transverse and longitudinal waves, students will need to know the differences between the direction of the oscillations of these two waves. Students are then asked to discuss how a ‘slinky’ could be used to demonstrate these two waves, after a short class discussion students can be shown an animation to demonstrate how a slinky shows these two types of wave. Students will now get into groups and come up with a short role-play to demonstrate the differences between these two waves. Students will now complete a progress check where they will need to copy and complete a paragraph to summarise what they have learned so far this lesson. This task can then be self-assessed using the mark scheme provided. A diagram of a longitudinal wave which shows the differences between rarefactions and compressions is shown to students, they will then need to answer a set of questions. The answers to this task are included in the PowerPoint so students can self-assess their work once it is complete. Next, students will need to ‘Think > Pair > Share’ their ideas about what happens when two or more waves join together. Students can discuss their ideas first before being shown a video demonstrating the process of superposing waves. Students will then complete a fill-in-the-blank task to summarise what they have learned this lesson. The plenary task requires students to write a WhatsApp message to tell their friends what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Energy in Food
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Energy in Food

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy. The lesson begins with a ‘Think > Pair > Share’ task whereby students are asked to think about why explorers need some large quantities of energy? What foods would provide them with such daily energy requirements? Students should have the covered the ‘Diet & Nutrients’ topic in Biology by this point, so after a short discussion in pairs they can feed their ideas back to the class and the answer can be revealed. Students will now be provided with a set of food labels, if possible they should also be allowed access to the Internet via phones/laptops, using these tools students should estimate their daily energy intake, compare this with others and then make a list of all the ways their body might use this energy. This follows into a task whereby students will look at activities, students will need to place these activities in order from most energy intensive to least energy intensive. Once complete, students can assess their work against the answers provided in the PowerPoint presentation. Students are now provided with a set of data on the energy required to perform a range of activities for one hour. They will firstly need to plot this data onto a bar graph, they will also need to answer a set of questions. The mark scheme for this task is included in the PowerPoint presentation so students can self-assess their work once it is complete. Lastly, students will complete an investigation into the energy content within food. The practical worksheet is included, students can collect the equipment listed and follow the steps in the method to fill in the results table in their books. Once complete, students should answer the summary questions. The plenary task requires students to write a twitter message to their friends, including #keywords. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Electromagnets
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Electromagnets

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’. The lesson begins with an introduction to electromagnets, students are shown a diagram of an electromagnet and told how an electromagnet is made; students can make a note of these details in their books. This follows into a video, students will watch the video and whilst watching will be given a series of questions to answer. Once this task is complete, students can then self-assess their work against the mark scheme that is provided. Students will now be asked to consider what might affect the strength of an electromagnet, students can be given a few minutes to come up with their ideas in pairs before feeding back into a class discussion. Students will now complete an investigation into whether the following two factors - number of coils of wire & voltage - will affect the strength of an electromagnet. Students should follow the instructions provided on the PowerPoint presentation and complete the table of results in their books. Once the investigation has been completed, students will complete a ‘Quick Check’ task in their books to assess their knowledge of what they have learned this lesson. The mark scheme for this is included for students to self-assess their work once it is complete. Lastly, students will complete a ‘Copy and Correct’ task whereby students will need to copy a paragraph of information into their books, correcting any of the information that they seem to be erroneous. This task can also be checked against the answers provided on the PowerPoint presentation. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Energy Transfer: Conduction & Convection
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Energy Transfer: Conduction & Convection

(1)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy’. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with an introduction to conductors and the process of conduction. Students will be given a definition for each of these terms, they will then be asked to consider what some examples of good conductors and insulators are. The answer to these questions are then revealed, students can take notes in their books. Next, students are shown a diagram which demonstrates what happens to the particles within a solid when conduction occurs. Students are then asked to discuss ‘Why does conduction occur best in solid materials?’ - after a short discussion students will be shown the answer to this question so they can self-assess their work. Students will now complete an investigation to test different types of materials - copper, wood, iron, plastic & zinc - to see how well they conduct heat. Students should follow the method provided on the practical worksheet, they can record their results in a table in their books. The next part of the lesson focuses on convection, students will watch a video, during which they will need to answer a set of questions. This task can then be self-assessed using the mark scheme provided. Lastly, students are asked to draw a cross-section of a room in a house with a radiator on and show how a convection current might occur with the air particles in this room. This task can be assessed against the diagram provided in the PowerPoint presentation, once complete. The plenary task requires students to write down three facts, three key words and 1 question to test their peers knowledge of what they have learned this lesson. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Introduction to Forces
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Introduction to Forces

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P1 ’Forces’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with a video which introduces students to forces, students will watch a video and will need to answer a set of questions whilst watching. This task can then be self-assessed using the mark scheme provided. Students will then be asked to ‘Think > Pair > Share’ their ideas about the differences between a contact and a non-contact force. Once they have had chance to discuss their ideas and feed back to the class, the definition for both contact and non-contact forces can be revealed for students to check their answers. Students will then be shown a set of diagrams of either contact or non-contact forces, students will need to sort these into the correct columns. This work can be marked and corrected once this task is complete. Students will now be shown how force diagrams can be drawn, to indicate the size and direction of a force acting upon an object. Students will then need to draw force diagrams for a set of objects, a worksheet for this task in provided. This work can then be self-assessed using the mark scheme provided on the PowerPoint. Lastly, students will be given the definition for an ‘interaction pair’, as well as an example to help contextualise this meaning. Students will then need to complete a progress check (‘copy-and-complete’ task) to assess their knowledge of what they have learned this lesson. This work can be self or peer assessed using the answers provided on the PowerPoint. The plenary task is for students to spend a minute talking to the person next to them about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Series & Parallel Circuits
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Series & Parallel Circuits

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’. This lesson begins with an introduction to both series and parallel circuits, students can make a note of the definition for each and also draw the example circuit diagram into their books. Next, students will be shown four circuit diagrams and will need to determine whether the circuit is a parallel or a series circuit. The answers to this task can then be revealed using the PowerPoint, so students can assess their work. Students will now watch a video on series and parallel circuits, they will need to answer a set of questions whilst watching this video. The mark scheme for this task is included in the PowerPoint presentation, so students can self-assess their work using the mark scheme provided. The latter part of the lesson focuses on current and potential different in series and parallel circuits. Firstly, students will be shown a diagram which shows that current anywhere in a series circuit will be the same and shows current in the main part of the parallel circuit will get divided up between each branch. Students will then use this information to complete a worksheet, this work can then be self-assessed using the mark scheme provided. Next, students will look at how potential difference across components in a series circuit is different to that of a parallel circuit. Students will then work out the potential difference of voltmeters found in four different circuit diagrams, this task can then be marked and corrected using the answers provided. The plenary is a ‘pick a plenary’ task, students need to choose to either summarise what they have learned in three sentences or write a definition for a set of key words related to the topic of electricity. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Friction & Drag Forces
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Friction & Drag Forces

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P2 ’Sound’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with a definition of ‘Friction’, students can take notes on this and then ‘Think > Pair > Share’ their ideas about how friction can be reduced. Two ideas that are then revealed are lubrication using oil/grease or smoothing surfaces down in order to reduce friction. Students will then need to complete worksheet on frictional forces, once students have completed this task they can either self-assess or peer-assess their work using the mark scheme provided. Next, students are introduced to the idea of a ‘drag force’, including the examples of air resistance and water resistance. Students will then need to create a mind map listing the ways in which the effect of drag forces could be reduced. Once students have discussed and noted their ideas down, their answers can be checked using the answers provided on the PowerPoint. In the last activity students will be given a set of statements, they will need to sort these statements into either either a ‘True’ or ‘False’ column. Students can then self-assess or peer-assess their work using the mark scheme provided. The plenary task is a ‘Pick a Plenary’ - so students can either summarise what they have learned in three sentences, or write a definition for a list of key words that students would have learned over the course of the ‘Forces’ topic so far. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Resistance
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Resistance

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’. The lesson begins with an introduction to resistance, students are provided with a definition which they can write down in their books, as well as a diagram to depict what happens to electrons as they flow around the metal wires within a circuit. Students will then complete a ‘copy-and-complete’ task, this can be marked using the mark scheme provided. Students are now asked to ‘Think > Pair > Share’ their ideas about whether the thickness of the wire would affect the resistance of the wire. Students will discuss their ideas with their peers, share their ideas with the class and then watch a video to find out the answer. Students can then summarise their findings in their books by completing a fill-in-the-blank task, this can then be self-assessed once complete. Students will now be introduced to Ohm’s law, which links the resistance of a component to the current running through it and potential difference across it. Students will be given an equation triangle, they can copy this down into their books and use this to complete the set of problems on the next slide. This work can be marked and corrected once complete. Lastly, students are asked to ‘Think > Pair > Share’ their ideas about which materials are good conductors and insulators. Students can discuss their ideas and write them down into their books, answers are then revealed for students to check their work against. The last assessment task is a ‘Copy and correct’ task, students are given a paragraph of information which they will need to copy and correct the mistakes as they go. Once complete, this can be marked using the mark scheme provided. The plenary task is a choice of two tasks - to summarise what students have learned in three sentences or to write a definition for a set of key words. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Squashing & Stretching Forces
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Squashing & Stretching Forces

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P1 ’Forces’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson starts with a recap on the differences between contact and non-contact forces. Students are given a list of forces and a variety of pictures, they need to match the correct name of the force with the correct picture and decide whether this is a contact or non-contact force. This task can self-assessed using the mark scheme provided. Students are now introduced to the concept of a ‘reaction force’, with examples of a ball hitting the floor and a person walking along the ground. Students are shown a particle diagram to demonstrate what is happening. Next, students are introduced to the idea of an elastic cord or spring being affected by ‘extension’ and ‘tension’ forces. To assess students knowledge of what they have learned so far they will complete a progress check, a set of questions which students can answer in their books. This task can then be self-assessed using the mark scheme provided. The last part of the lesson will look at Hooke’s law, students will conduct an investigation where they will investigate Hooke’s law. This practical involves students adding 1 Newton weights to a hanger which is attached to an elastic band. Every time a new weight is added, the distance between two marked point on the elastic band is measured. Students should carry out the investigation, record their results in a the table and then plot a graph of their results. Hopefully, students will draw a linear graph and be able to identify what Hooke’s law is from their results. Students can check their work against the results provided in the PowerPoint. Finally, students are asked to complete a ‘Sentence Link-Up’ task, this is a literacy task which requires students to link three words in a summary sentence. This work can be self-assessed once it is complete using the answers provided on the PowerPoint. The plenary requires students to write three quiz questions to test their knowledge of what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Balanced & Unbalanced Forces
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Balanced & Unbalanced Forces

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P1 ’Forces’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with ‘Think > Pair > Share’ activity which asks students to look at a photo of a tug-of-war and asks students to decide which side would win and why. After a short discussion, students will be introduced to the idea of ‘balanced’ and ‘unbalanced’ forces, including examples. Students will now complete an investigation on ‘Forces’, this is a circus activity which requires students to decide which two forces are acting on each of the objects. Students will also need to decide if the forces are balanced or unbalanced, their results can be recorded in the table provided. Students will be asked a series of questions on the effects of balanced and unbalanced forces acting upon an object, the first questions is on a cyclist. This work can then be self-assessed using the mark scheme provided. The next questions are on the forces acting upon a car, this can be competed in their books and the work can be marked and corrected using the mark scheme provided. The last part of the lesson focuses on how forces can change the direction of an object, students are shown the example of the Moon orbiting the Earth due to the pull of gravitational force acting upon the Moon. The plenary task requires students to write down three facts, three key words and pose one question to test their peers knowledge of what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ The Earth
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ The Earth

(1)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P4 ’Space’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the idea of the Earth spinning on it’s axis, which gives us day and night. This is demonstrated to students using a diagram, they can take notes on this and also draw a sketch of the Earth spinning on it’s axis. Students will then watch a video on Earth and the way that it moves to give day/night and the different seasons. Students will answer a set of questions whilst they are watching the video, once complete the task can then self-assessed using the mark scheme provided. Next, students are shown a diagram which demonstrates the reason why in the summer the UK is hotter and longer days, whereas in the winter the UK is older and has shorter days. Again, students could take notes on this and sketch a diagram in their books to demonstrate this process. The next activity requires students to use an array of resources - beach ball, balloon, torch, marker pen - to demonstrate the orbit of the Earth around the Sun to explain why we have seasons. Students will now complete a worksheet which will assess their knowledge of what they have learned so far this lesson. The mark scheme for this task is included in the PowerPoint so students cans self-assess their work once it is complete. The last activity is a summary task, students should copy and complete the sentences to summarise what they have learned so far this lesson. The work can be self or peer assessed using the mark scheme provided once this students have completed it. The plenary activity requires students to write a Whatsapp message to a friend about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 - Energy Transfer: Radiation
SWiftScienceSWiftScience

KS3 ~ Year 8 - Energy Transfer: Radiation

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy’. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a task whereby students will watch a video on infrared radiation, they will need to try to come up with a definition for infrared radiation whilst watching. The answers that students come up with can then be marked and corrected using the answer provided. Students will then be shown a diagram of a Leslie’s cube, and are told that different surfaces emit different amounts of infrared radiation. Students will then be asked to make a prediction about the surface they think (out of a choice of surfaces) will emit the most radiation. Students will then complete an investigation into the amount of infrared radiation given off by different coloured tins - black or silver. Once complete, students can use the data they have collected to draw a graph of their results and complete the analysis questions. Students will then be given examples of how infrared radiation can be absorbed and reflected and why these two processes are useful. Following on from this, students will complete a ‘fill-in-the-blank’ task to summarise what they have learned this lesson, this task can be self-assessed using the mark scheme provided. The plenary task is a ‘pick a plenary’ task, students are asked to either summarise what they have learned in three sentences or write a definition for a list of key words provided. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ The Moon
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ The Moon

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P4 ’Space’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the phases of the Moon, students are shown a diagram which show the changing appearance of the Moon as seen by Earth as the Moon orbits the Earth. The next task is a memory test, students will be shown images of the different phases of the Moon along with the names of these specific phases. Students will need to memorise the as many names as possible, before the names are taken away. Students will now have a few minutes to fill in their worksheet with the correct names, this task can then be self-assessed using the mark scheme provided. Next, students will complete a worksheet which requires them to shade in circles to show the phases of the Moon at particular positions. There is an extra challenge task to add labels to show the names for each phase. The mark scheme for this task is included in the PowerPoint so students can mark and correct their work. Next, students will watch a video on eclipses. Whilst watching the video they will answer a set of questions, once complete students can self-assess their work using the mark scheme provided. Laslty, students will complete a ‘copy-and-complete’ task to summarise what they have learned this lesson. This work can also be marked using the answers provided on the PowerPoint. The plenary task is a ‘pick a plenary’ - either unscramble a set of anagrams to spell five key words taken from the lesson today or use a set of key words (provided) to summarise what students have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Colour
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Colour

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P3 ’Light’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. Students are firstly introduced to the idea of ‘white light’ being split up into the colours of the rainbow. They are then shown a diagram of a ray of white light hitting a prism, which then leads to the refraction of this light - showing the colours of the rainbow from red to violet. Students can sketch a diagram of this into their books, indicating the most refracted and least refracted colours. Students are then shown a diagram which indicated how primary colours can be mixed together in various combinations to make secondary colours. The next part of the lesson, students will focus on how we observe different coloured objects. White light will bounce off an object, the colour the object appears depends on the colour of light that it reflects. Various diagrams are shown to students to demonstrate this point, they could sketch a copy of one of the diagrams or draw their own version in their books. They are then given a worksheet to assess their knowledge of what they have learned so far this lesson, extension questions are included for higher ability students. This work can be self-assessed using the mark scheme provided once it is complete. Students are now shown what happens to the appearance of objects when they are seen in coloured light rather than white light - coloured objects will only reflect the colour it is and will absorb any other colours - which means it appears to be black. Lastly, students are shown how filters are used to subtract light. Students will then complete a progress check to assess their knowledge of what they have learned this lesson, the mark scheme for this task is included on the PowerPoint. Students can then self-assess their answers using the mark scheme provided. The plenary requires students to write down 3 facts from the lesson, 3 key words and 1 question to test their peers knowledge of what they have learned. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ The Night Sky
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ The Night Sky

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P1 ’Forces’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with a short video about light-years, students will watch the video and will need to answer to two questions whilst watching. This task can then be self-assessed using the mark scheme provided. Next, students will now each be given a piece of information about an object which is visible in the night sky - comets, meteors, planets (some!) and satellites. Students will need to swap information with people around the room in order to complete a summary table. Once complete students can use the mark scheme provided to self-assess their work. Next, students are introduced to the definitions for the terms ‘galaxy’ and ‘Universe’, which students could take notes on. Now students will complete a progress check, which is a set of questions aimed to assess students knowledge of what they have learned so far this lesson. This task can be either peer-assessed or self-assessed using the mark scheme provided. Lastly, students will be asked to create three quiz questions (which they should know the answers too!) to test their peers knowledge of what they have learned this lesson. If there is time, students can then read some of their questions out and ask particular students in the class. The plenary activity is an anagram challenge, students are given a set of anagrams of key words learned this lesson. The answers are provided to check they are correct! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Reflection
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Reflection

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P3 ’Light’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with a recap on what was learned last lesson - students will be given a set of three descriptions and will need to decide which group of materials it is describing. This task can then be checked using the answers provided. Next, students are shown (with a diagram) what happens when light hits a reflective materials such as a mirror. The incident ray, reflected ray, normal line and angles of both incidence and reflection are labelled - students can sketch a diagram of this into their books. They then need to complete the ‘fill-in-the-gap’ task which outlines the law of reflection - the angle of incidence is equal to the angle of reflection. Students are then shown the different reflections which can be produced by different surfaces - diffuse or specular. Students can consider why a clear image is produced by a smooth surface and why a blurry image is produced by a rough surface. After a short class discussion, students can take notes of this in their books, along with sketches of the two types of reflection. Next, students will get to investigate the law of reflection. They will be given a practical worksheet which outlines a method by which students will direct a beam of light from a ray-box to a mirror, they should measure the angle of incidence and angle of reflection. This should be repeated with various angles of incidence, their results can be recorded in the table provided. Next, students are asked a set of progress check questions to test their knowledge of what they have learned so far on reflection. This task can be self-assessed once it is complete, using the mark scheme provided on the PowerPoint. The plenary task requires students to complete one of the following ‘sentence starters’ that are provided to provide a summary of what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Forces At A Distance: Non-Contact Forces
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Forces At A Distance: Non-Contact Forces

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P1 ’Forces’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with a recap activity, students will need to sort a list of forces into two categories: contact and non-contact forces. This task can the be self-assessed using the mark scheme provided. Next, students will recap on the non-contact forces that they have already learned about: gravitational forces, magnetic forces & electrostatic forces. Students will the be asked ‘What is a Force Field’ - they will then need to ‘Think > Pair > Share’ their ideas. After a short class discussion, the answer can be revealed to students and they could take notes on this in their books. Students will carry out an investigation which helps them to visualise the force field which surrounds a magnet. Students will place small compasses at pin-point positions surrounding a bar magnet. They will need to draw an arrow to represent the direction that each compass is facing, lines can be drawn between each position which will show the overall force field of the bar magnet. This task can be self-assessed using the mark scheme provided on the PowerPoint. Next, students are told the difference between weight and mass, they are also given the calculation for the weight of an object when you are given the gravitational field strength of the planet the object is found on, plus the mass of the object. Using this calculation students will then need to complete a set of questions on weight & mass, once complete students can self-assess their work using the mark scheme provided. The last task is a ‘Progress Check’ task, whereby students will copy and compete the paragraph of information to summarise what they have learned this lesson. The plenary task requires students to write a twitter message to sum up what the students have learned in the lesson, they will need to try to #keywords. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Light
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Light

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P3 ’Light’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins by students being shown a video of a laser show, students will need to note down their observations about how light travels. Hopefully students should identify that light travels in straight lines - a diagram can be shown to students to identify this. Students are also shown a diagram which demonstrates how shadows are formed. Next, students will be given the definition of a luminous and non-luminous object. Students will need to come up with their own examples of luminous and non-luminous objects and write their ideas down into their books, under two headings. This task can then be self-assessed using the mark scheme provided, as well as other suitable suggestions. Students will now be shown some pictures of objects which are either opaque, transparent or translucent, students should now ‘Think > Pair > Share’ their ideas about how to group these images. Hopefully, students should identify the three categories, this will be revealed as part of a class discussion. Students will now be given some time to come up with their own definitions for the terms: opaque, transparent and translucent and should come up with their own examples. This task can then be self-assessed using the mark scheme provided. The next part of the lesson focuses on the speed of light, students will be given the speed of light and will be introduced to terms such as light-second, light-minute and light-year. Students will then be asked a question ‘What travels faster - light or sound? Give examples as evidence’. Students can discuss in pairs, writing their ideas down in their books. This can then be self-assessed using the mark scheme provided. The last task requires students to complete a ‘Progress Check’ - students will fill in the blanks to complete a paragraph of information summarising what they have learned today. This work can be marked and corrected once complete. Lastly is a true or false activity which students can either complete in their books or using mini whiteboards. The plenary task requires students to complete an ‘Exit Card’ to summarise three things they have learned, five key words and one question to their peers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ The Eye and The Camera
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ The Eye and The Camera

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P3 ’Light’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an explanation of how the different parts of the eye work together in order for you to see objects. The functions of different parts of the eye are briefly explained. Students will then need to complete a task to assess their knowledge of this introductory information, this can be self-assessed using the mark scheme provided. This leads onto another task which looks at the function of different parts of the eye, students will each be given a different piece of information outlining the function of one part of the eye. Students will then need to walk around the room, sharing information with each other to complete a table on the functions of eye parts. This task can be marked using the answers provided. Students will then be shown an image of a pinhole camera, they will need to sketch a copy of it into their book. They are then asked a few questions which looks at the similarities between a pinhole camera and the eye, students should answer these questions in their books and once complete they can mark their work using the answers provided. Students are then provided with some information comparing the structure and function of eyes compared to a digital camera. Students will need to outline one way in which they are similar and one way in which they are different, this task can also be assessed using the answers provided. Lastly, the plenary task requires students to write down three sentences to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
Ks3 ~ Year 8 ~ Current & Charge
SWiftScienceSWiftScience

Ks3 ~ Year 8 ~ Current & Charge

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’. This lesson begins with an introduction to current & charge, students are provided with the definition for current and told that an ammeter is the component used to measure current, in amps. Students will then watch a short video on current, during which they will need to answer a couple of questions. Students can mark their work once this is complete. Students are then told the role of the battery in the circuit, as the store of energy which provides the push which gets the current flowing, pushing the charge around the circuit. Next, students are introduced to electrical circuit diagrams, they are firstly shown a simple circuit diagram and are asked to label the components indicated from a list of key words: switch, battery and bulb. After students have drawn the circuit and had a go at labelling it, the answers can be revealed so they can mark and assess their work. Students are now given a set of instructions to draw 4 different circuit diagrams, the answers to this task are included in the PowerPoint so students can self-assess their work using the mark scheme provided. Lastly, students will complete a task which requires them to match sentences starters to the correct sentence enders, to assess their knowledge of what they have learned this lessons. This task can then be either self-assessed or peer-assessed using the mark scheme provided. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)