Hero image

SWiftScience's Shop

Average Rating4.26
(based on 751 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

785k+Views

456k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA Trilogy GCSE (2016) Biology - Monoclonal antibodies HT
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Monoclonal antibodies HT

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Infection & Response’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson firstly begins by looking at what monoclonal antibodies are and how they are produced, using a flow diagram the first slide goes through these details. The next slide is the images from the flow diagram but no description of what is happening, pupils need to match the statements to the correct part of the process. This can then be assessed. The next part of the lesson focuses on the uses of monoclonal antibodies, firstly pupils are given a set of questions about pregnancy tests which they will need to answer using a video. This can then be assessed using the answers provided. Pupils are then given a table/asked to draw a table in their book for the different uses of monoclonal antibodies. Pupils will then need to use posters which can be positioned around the room or on desks to fill this table in. The final activity is a card sort - pupils are given statements about the uses of monoclonal antibodies which are either advantages or disadvantages, pupils will need to write these statements into the correct column in their books. Once finished they can self-assess their work using the answers provided. The plenary activity is for pupils to choose two questions to answer from a list about the topic of the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology (2016) - Removing waste products HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - Removing waste products HT

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by students discussing what they think the waste products of the body are, they can write down their ideas into their books as a mind map. As an extension pupils can consider which processes within the body actually release these waste products. The lesson then moves on to identify carbon dioxide and urea as the two major waste products of the body, pupils will then be given a levelled worksheet which they can complete by using information posters either placed around the room or placed on their desks. After pupils have completed this worksheet, they can self or peer assess their work using the mark scheme provided. The next task is an exam-style question on the work the pupils have just completed, higher ability pupils can challenge themselves by completing these questions in the back of their books and not looking at their notes. Once finished pupils can mark their work using the mark scheme provided in the PowerPoint slide. The plenary task is an anagram challenge, pupils will need to unscramble 6 words to reveal 6 key words used within the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - Photosynthesis
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Photosynthesis

(3)
This is a lesson designed to meet specification points for the new AQA Trilogy GCSE Biology ‘Bioenergetics’ scheme of work. The lesson begins by pupils being introduced to the term ‘photosynthesis’ and then being asked to consider the raw materials that plants need in order for photosynthesis to occur. Pupils are then given three minutes to write down everything they have learnt about photosynthesis so far, with an extension task to write the word equation for the reaction. In the next part of the lesson pupils are introduced to the word equations and are challenged to write a balanced symbol equation for this reaction. Mid-lesson plenary involves a set of exam-questions (total marks = 9 marks) which they can complete in silence and then peer or self-assess using the mark scheme provided. Pupils are then introduced to the concept of endothermic and exothermic reactions, they are given the definition for an endothermic reaction and are then asked to ‘think, pair, share’ with a partner about what an exothermic reaction might be and whether photosynthesis is endothermic or exothermic. After 5 minutes, pupils are given the answers and they can mark their work. The final activity is for pupils to watch a video on the scientific investigation conducted by Van Helmont, pupils watch the video and answer questions on a worksheet which can then be self or peer-assessed using red pens. Pupils can choose their plenary activity - either writing quiz questions on the topic of the lesson or summarising what they learnt by writing a twitter message along with #keywords. All resources are included in the PowerPoint presentation, thank you for purchasing :)
NEW AQA GCSE (2016) Chemistry  - The properties of polymers
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - The properties of polymers

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students will firstly be given a recap on the definition of a polymer and an explanation of the factors which can affect the properties of a polymer. Pupils are then given some information about high-density polyethene and low-density polyethene, they will need to use this information to complete a worksheet of questions. This work can then be self-assessed using the mark scheme provided. Pupils will now complete an investigation into the modification of polymers by finding how the quantity of borax solution can affect the properties of slime, they can record their observations in a table in their books. Next, students are introduced to the processes of thermosetting and thermosoftening polymers with a video - using the information in the video they will need to answer a set of questions. This work can be self-assessed using the mark scheme provided. The last task is a ‘Quick Check’ task - pupils will need to answer a set of questions about what they have learned this lesson. Their work can then be self-assessed using the mark scheme provided in the PowerPoint. The plenary is a ‘Pick a plenary’ activity which requires pupils to either unscramble a set of anagrams or write a summary sentence for the lesson using a list of key words. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Chemistry - Concentration & titrations
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Concentration & titrations

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculations’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction of concentration, students learn the definitions of key words such as solute, concentration, solvent and dilute and look at the difference between concentrated and dilute solutions. Students will then be shown a selection of diagrams and students will need to which shows the most concentrated and the most dilute solutions. Pupils will now be introduced to the calculation for concentration, students will need to use this calculation to work out a set of problems. Students can self-assess their work using the answers provided. The next set of problems will require pupils to rearrange the equation and also convert units of measurements, again pupils should show all of their working for each of these problems. The answers for these problems are included in the PowerPoint presentation, students can now use this to self-assess their work. The next part of the lesson focuses on titration, firstly students will answer a set of questions whilst watching a video. This work can be assessed using the mark scheme provided. Students will then be given a card sort, they will need to rearrange the cards into the correct order to describe the steps taken during a titration, which can then be assessed using the answers provided. The plenary task is for pupils to spend a minute talking to the person next to them about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Biology GCSE (2016) The brain HT
SWiftScienceSWiftScience

NEW AQA Biology GCSE (2016) The brain HT

(4)
This lesson is designed for the NEW AQA Biology GCSE, particularly the ‘Homeostasis’ SoW and specifically for the higher tier. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an overview of the function of the four main lobes of the brain, pupils will be given cards of information which they need to use to complete a table on these functions. Pupils will then be introduced to further structures which they are required to know the functions of: medulla, cerebellum, hypothalamus and cerebral cortex. Pupils will need to use posters to complete a worksheet where they label a diagram of the brain and outline the roles of each of these structures. Following this is a card sort where pupils can assess their understanding of what they have just learnt. The next part of the lesson focuses on how scientists and doctors have gained evidence for the structure and function of the brain. Firstly students will watch a video and answers questions on Phineas Gage, which can be self-assessed once complete. This will then go on to describe the role of electrical brain stimulation and MRI scans in providing knowledge about the brain. This is assessed with a copy and complete summary sentence task and finally the plenary is a 6-mark exam question. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Gas Pressure & Temperature
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Gas Pressure & Temperature

(2)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Molecules & Matter’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Firstly, students are asked to ‘Think > Pair > Share’ their ideas about how a gas exerts pressure upon a surface. Students will need to discuss their ideas within groups before feeding back the class, the explanation can then be revealed using the PowerPoint presentation - including a diagram. Students will then watch a video on gas pressure and temperature, students will need to answer a set of questions whilst watching the video. Once this has been completed students can self-assess their working using the mark scheme provided. Students are now shown some information on an investigation into the effect of temperature on gas pressure, using the PowerPoint presentation. Students will need to read the information and and answer questions on a worksheet, this work can then be self or peer assessed using the mark scheme provided. Lastly, students are now given an information sheet about observing random motion of gas particles using a smoke within a smoke cell. Students will be given a set of questions that they will need to answer after reading the information sheet, they can work together in pairs. The mark scheme for this task is included in the PowerPoint so students can assess and correct their work once this is complete. The plenary task requires pupils to complete a set of sentence starters to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016)  Chemistry - Dynamic Equilibrium & Altering Conditions
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Dynamic Equilibrium & Altering Conditions

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a ‘Think > Pair > Share’ task whereby students need to consider what it means for a reaction to be in ‘equilibrium’ . After a class discussion, the definition of a reversible reaction (in a closed system) to be at equilibrium is revealed to the class, which they can note down in their books. This is further explained using a set of diagrams to depict what happens to the concentration of reactants and products during the course of a reversible reaction. Students can sketch a graph into their book to show how the equilibrium of a reversible reaction is reached. The next task focuses on ‘Le Chatelier’s Principle’, students are firstly introduced to the idea that the equilibrium of a reversible reaction can be altered by changing the conditions of that reaction, i.e. an increase in temperature. Students will then be shown a set of demonstrations (video links included) for each they will need to note down their observations, identify the conditions which are changing and match the correct reaction to the correct word equation. Pupils will complete a worksheet for this task, which will be assessed using the mark scheme provided. For the next part of the lesson, students will watch a video on the effect of pressure on equilibrium and answer a set of questions. These questions can be self-assessed using the answers provided on the PowerPoint. Students will now ‘Think > Pair > Share’ the effect of an increase in temperature on the equilibrium of a reversible reaction, the answer is then revealed to pupils using an example. Pupils will now complete a ‘Quick Check’ task where they will be required to answer a set of questions about the reversible reactions and the effect of altering conditions on dynamic equilibrium. Pupils can self-assess their work using the answers provided on the PowerPoint. Finally, students will need to complete a summary sheet on the effect of pressure and temperature on the equilibrium of a reversible reactions, students can self assess their work using the answers provided. The plenary task requires pupils to write down three sentences to summarise what they have learnt in today’s lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Evolution & speciation HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Evolution & speciation HT

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW, for the higher tier, biology only specification. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson with a think > share > pair task on the definition of a species, pupils ca try and come up with their own definitions before you reveal the true answer. The next part of the lesson focuses on Alfred Russel Wallace and his work on the theory of speciation. Pupils will need to watch the video on Wallace and using the video come up with a timeline or notes on the life events and work produced by Wallace in his lifetime. Once this task is complete pupils can compare what they have written against success criteria provided, pupils can mark, correct and add any important notes using the criteria. The next part of the lesson focuses on the process of speciation, firstly pupils will need to watch a video about organisms which are separated and the develop certain characteristics depending on the environment they are living in. The second video provides a more detailed description of how speciation occurs, pupils will need to answer questions whilst watching this video. Pupils can mark their work using the mark scheme provided once they have completed this task. The next task is a card/statement sort, pupils will need to place the statements provided (can cut out as a card sort) into the correct order to describe the process of speciation, once pupils have completed this task they can mark their work. The final activity is an exam-style question on speciation, pupils will need to complete the exam question in their books (at the back without notes as an extra challenge). Once pupils have completed the exam question they can self or peer assess their work using the mark scheme provided. The plenary task is for pupils to write a twitter message by Alfred Wallace about his work on the theory of speciation. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Making Ammonia - The Haber Process
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Making Ammonia - The Haber Process

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an outline of why nitrogen so important to plants and how farming can disrupt the balance of nitrate ions in the soil, hence the need for efficient fertilisers. Firstly, pupils will watch a video on the Haber process - a way of turning nitrogen in the air into ammonia, the ammonia can then be used to produce fertilisers. Whilst students are watching the video they should be answering a set of questions which will be provided to them, this work can then be self-assessed using the mark scheme provided. Next, pupils are given a diagram of the Haber process as well as some jumbled up statements describing each step - they will need to arrange the statements in the correct order - assigned to the correct part of the diagram. This work can be self-assessed using the mark scheme provided. The next part of the lesson focuses on the reaction that takes place and the controlled conditions of the reaction vessel which ensures that the optimum temperature and pressure are maintained for the optimum yield of ammonia - without expending more energy than needed! The last part of the lesson is a set of exam-style questions, pupils will need to answer these in their books and they can then either peer or self-assess their work using the answers provided. The plenary task is for pupils to write a list of key words from the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Half-life & Radioactivity
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Half-life & Radioactivity

(0)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to some key terms, including ‘activity’ and ‘count rate’, students can take notes from the board so they have the key definition in their books. Next students will be introduced to the idea of a ‘half-life’, students will be given the definition and shown a graph and a diagram to help illustrate this concept. Students will then have an opportunity to investigate whether the radioactive is random or predictable, students will be given a coin in pairs and will be asked to flip it 20 times. Can you predict the outcome of the next flip? What was the rough ratio of coins flipped head:tails? This investigation demonstrates that the process of radioactive decay is random but with a large enough sample it is possible to predict the number that will decay in a certain amount of time. Students will then be shown how to complete half-life calculations using a worked example, before students are given a set of problems to work through. The mark scheme for this work is included in the PowerPoint for students to assess their work. Pupils are given another worksheet of problems to work through, students must show their working at all time. This task can also be self-assessed or peer-assessed using the mark scheme included in the PowerPoint. The last task requires students to fill-in-the-blanks on a paragraph which summarises what they have learned this lesson. The answers to this task is also included so students can mark and correct their own work… The plenary task is for students to write a set of summary sentences about what they have learned this lesson, including as many key words as possible from the list provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - Anaerobic Respiration
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Anaerobic Respiration

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Bioenergetics’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Firstly pupils are asked to consider why organisms may not be able to continuously carry out aerobic respiration. They can discuss in pairs and then as a class and be introduced to the idea of anaerobic respiration. They will fill then complete a fill-in-the-blank task to sum up this process. Pupils will then watch a video where they will answer questions about anaerobic respiration, their answers can be checked against the mark scheme provided. Now pupils are introduced to the idea of oxygen debt, they are given an information card in pairs (for lower ability classes you may want to tag read this as a class) and then pupils will need to answer questions about this information. They can talk about in partners, once finished they can self or peer assess their work. Finally the different products of anaerobic respiration that are made in different organisms are highlighted, it is touched upon in the video but this is clear slide to show anaerobic respiration in plants, bacteria and yeast. Pupils will complete some exam-style questions to assess their knowledge of this topic, can be answered in the back of their books to fully test them! Pupils can then mark their own work using the mark scheme provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Chemistry - Titration practical & calculations HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Titration practical & calculations HT

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculations’ SoW and specifically designed for higher tier GCSE chemistry students. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with students learning how to calculate the concentration of a solution in mols/dm3 when you know the mass of the solute in the solution. Students learn the steps necessary to complete this calculation, they can then complete a set of problems. This work can be self-assessed using the answers provided in the PowerPoint presentation. Students are then asked to discuss how they might work out the mass of a solute in a solution when they know the volume and concentration of a solution. After a short class discussion, the PowerPoint reveals four steps students should work their way through when approaching a problem such as this one. Students are then given two further problems to have a go at, they should show their working at each step of the calculation. Answers to the questions, as well as working out, is included in the PowerPoint presentation. Students are then given a worksheet, including a worked example of how to use a titration to calculate the concentration of a unknown substance. Using the worked example as a guide, students should attempt to answer the questions on the worksheet. For lower ability students it will be worth going through the worked example on the board first, those very able students should be able to use the worked example as a guide when answering the other questions Once this task has been completed students should self-assess their work using the mark scheme provided. The last task is a titration practical, their is a worksheet included in the PowerPoint for students to use as guide when completing the practical - including an aim, equipment list, method and results table. Once they have completed the investigation they should be able to use the balanced symbol equation to calculate the concentration of sulfuric acid used in this titration. The plenary task is for pupils to write down 3 key words, 2 facts and a question to test their peers on what they have learned today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW Trilogy AQA GCSE (2016) Biology - Eukaryotic & Prokaryotic cells
SWiftScienceSWiftScience

NEW Trilogy AQA GCSE (2016) Biology - Eukaryotic & Prokaryotic cells

(3)
This is a lesson aimed at the new AQA GCSE Biology (2016) - ‘Cells’ SoW. The lesson begins by identifying examples of prokaryotic and eukaryotic cells, pupils can begin to think about the structural differences between these two types of cells. Next, pupils are given a worksheet plus an additional card of information on either the structure or function of a bacteria cell. Pupils will need to walk around the room and trade the information on their card with others to fully complete a labelled diagram of a bacteria cell and descriptions of the functions for each structure. Once completed pupils can peer or self-assess their work using the information within the PowerPoint slide. The next activity requires pupils to apply their knowledge of the structure of bacteria (prokaryotic) cells and compare this to the structure of eukaryotic cells, pupils need to construct a list/table in their books to identify the similarities and differences between these two cells. Pupils can then self-assess their work against the list provided in the PowerPoint slide. The next activity is an assessment activity, pupils will need to complete the past-paper question in their books and again self/peer-assess their work using red pens. The final activity involves a list of ‘True/False’ statements, to gauge the progress of the class this could be completed by students holding up red/amber/green cards to identify whether they think the statement is true or false. All resources are included in the PowerPoint presentation, please review to provide me with feedback :). Thank you.
NEW AQA GCSE (2016) Chemistry  - Testing for gases
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Testing for gases

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical Analysis’ SoW. Students are introduced to the idea that scientists are able to conduct quick and simple tests to identify a number of gases - oxygen, carbon dioxide, hydrogen, chlorine. Pupils will now complete a circus of activities, moving around the room to conduct tests for the presence of oxygen, hydrogen and carbon dioxide, recording their results in a table in their books. Pupils will need to watch a teacher demonstration for the test for chlorine, they can also record their observations of this demo in their table of results. Pupils will then be shown a video outlining each of the gas tests, they can watch this to self-assess their answers from the investigations they carried out. Students will now be given a card sort, for each gas - oxygen, carbon dioxide, hydrogen and chlorine - they will need to identify the correct method and correct positive results. They should do this with their books closed so they don’t rely upon the results collected from the last task! Their work can then be self-assessed using the mark scheme provided. The next task is a ‘Quick Check’ activity whereby pupils need to answer a set of questions based upon what they have learned this lesson, the answers to this task is provided in the PowerPoint so students can either self-assess or peer-assess their work. The plenary task is ‘Take a minute’ where students need to spend a minute talking to the person next to them about what they have learned in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Useful Alloys
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Useful Alloys

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Using Our Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with a Think > Pair > Share task for pupils to consider the properties of gold, pupils can list them down and then share their ideas with the class. The property of gold being very soft is not always useful, especially when it is being used to make jewelery and so it is often mixed with another metal (e.g. platinum) to make it stronger. The concept of an ‘alloy’ is then introduced, as well as a definition and an explanation as to why alloys are useful. Some useful properties of alloys are listed - malleable, durable, strong, flexible - pupils need to come up with a a definition for each of these properties. Once this task is complete students can self-assess their work using the mark scheme provided. The next task for pupils to complete is ‘Who’s right for the job?’ - students will be given information on the properties of different metals, as well as a list of alloys needed for different jobs - used in jewelery/used to make airplane bodies. Students need to select the correct metals to make the alloys required, their work can be self-assessed using the mark scheme provided. The next part of the lesson focuses on iron alloys specifically, firstly students will watch a video on iron alloys and will need to answer a set of questions - this work can then be self-assessed using the answers provided. The last task for pupils to complete is a table whereby students need summarise how carbon content affects steel and it’s properties, this work can also be self-assessed using the mark scheme provided. The plenary task requires pupils to spend a minute talking to the person next to them about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Cloning HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Cloning HT

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by introducing pupils to the definition of a clone and outlining the different cloning techniques they will learn about in this lesson. Pupils will firstly learn about two techniques used to clone plants - cuttings and tissue culture. Pupils will learn about these two techniques and will need to complete the correct descriptions on a diagram demonstrating the steps involved with taking plant cuttings. Once this is complete the work can be self-assessed. The second part of the lesson focuses on adult cloning. Firstly pupils are talked through the process of embryo transplants using a diagram. Pupils will be provided with a worksheet with a flow diagram of the embryo transplant process but missing statements to describe the process. Pupils will need to choose the correct statements to go in these boxes, this work can be assessed using the answers provided once complete. Adult cell cloning is the other example of an animal cloning technique pupils will need to describe. Firstly, pupils will watch a video about Dolly the sheep and the adult cell cloning process, using this video they will need to answer some questions. This can be checked against the answers which will be provided. For the next activity pupils will be provided with the diagram of the sequence of events involved in the adult cell cloning process, pupils will be required to fill in the blanks to complete the descriptions of the steps involved. Once completed pupils can use the mark scheme to assess their work. The final activity focuses on the risks and benefits of adult cell cloning, pupils will be given a list of opinions about this cloning technique and they will need sort them into advantages/disadvantages in their books. The plenary activity is for pupils to pick a task: either write a twitter message about what they have learnt this lesson or unscramble anagrams to spell out 5 key words from the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - The human digestive system
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - The human digestive system

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Organisation’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by pupils given a bit of information about the tissues which make up the lining of the stomach. They will need to read this information in pairs and then answer questions in their book, once completed the pupils can self or peer-assess their work using the answers provided on the next slide. Pupils will then be introduced to the digestive system, it’s role and the organs involved with this system. They should be able to remember some information from previous lessons on organ systems (see ‘Principles of organisation’ in my shop!). Now, pupils must read through another card of information in pairs and complete tasks on the board, these tasks will require pupils to label a diagram of a human body to show the locations of the major organ systems and also describe the function of these organs. The next task is a video which pupils will watch and answer questions, list of questions is provided as a worksheet. Pupils will then self-assess their work using the answers provided after the video has finished. The final activity is an exam-style question, pupils will answer this on the sheet and then mark their work using the mark scheme. The plenary task is a word search challenge, there are 10 words associated with digestion in the word search. Pupils will race to complete against each other to complete the word search. You can award a prize if you have any :) All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics  - Series & Parallel Circuits
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Series & Parallel Circuits

(0)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with an introduction into the differences between series and parallel circuits, students can take notes and draw a diagram of each type of circuit in their books. Students will then watch a video on series and parallel circuits, they will need to answer a set of questions in their books which focuses on how current and potential difference across components changes in a series vs. parallel circuit. Once this task is complete, students can then self-assess their work using the mark scheme provided. Next, pupils have to identify whether a circuit is a series circuit or a parallel circuit from a set of diagrams. Then, students are given a worksheet of parallel and series circuits, given the current of the ammeter shown in the diagram they will need to work out the current of the ammeters placed elsewhere in the circuit. Students can then self or peer assess their work using the mark scheme provided. The next part of the lesson focuses on the resistance of components found in series and parallel circuits. Firstly, students will be given the ‘Resistance Rule’ for components in a series circuit, as well as the calculation to work out total resistance in a series circuit. Using this, students can then answer some questions which can be self-assessed using the mark scheme provided. Next, pupils are introduced to the ‘Resistance Rule’ for components placed in a parallel circuit. Once they have learned the rules, pupils can answer a set of questions which can then be either peer-assessed or self-assessed using the mark scheme provided. The plenary task is a ‘Pick a plenary’ task - students can either summarise what they have learned this lesson in three sentences or they can write a definition for a set of key words from the ‘Electricity’ topic. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics  - Current-Potential difference Graphs
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Current-Potential difference Graphs

(2)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to the term ‘Ohmic conductor’, students are also shown a current-potential difference graph for a wire to demonstrate that in an Ohmic conductor the current is directly proportional to the potential difference. Students will then conduct an investigation into whether the length of a wire will effect the resistance within the wire, students will complete the investigation using the method and once finished should draw a graph of their results and write a conclusion to summarise their findings. This work can be checked against answers provided within the PowerPoint presentation. Next, students are shown a current-potential difference graph for a filament lamp and a diode. Students will be given a graph along with a set of questions to answer about these two graphs, once this task is complete students can self-assess their work using the mark scheme provided. Students are then shown a diagram of a thermistor and light-dependent resistor and provided with an explanation of what happens to the resistance of these two components when the temperature and light are increased, respectively. The last task is a past-paper exam question, those higher-ability students should try and complete these questions without looking at their notes. Once complete, the work can be either self or peer assessed using the mark scheme provided. The plenary task requires pupils to complete one of the sentence starters to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)