Hero image

SWiftScience's Shop

Average Rating4.26
(based on 751 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

785k+Views

456k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW (2016) AS-Level Biology - Enzyme Inhibition
SWiftScienceSWiftScience

NEW (2016) AS-Level Biology - Enzyme Inhibition

(1)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a starter discussion to explain the effect temperature has on enzymes. Students should explain why they think many enzymes cannot function at over 60 degrees celcius. Then, go on to teach students the inhibitor classifications and their functions through three slides containing definitions and diagrams. Students then have an opportunity to identify competitive and non-competitive inhibitors as a class through two easy diagrams. Students will then be asked to complete “worksheet 1” independently, in order to practise diagramming competitive and non-competitive inhibition with complete definitions, on their own. The answers are displayed on the following slide so students may self-assess, or you may choose to have them assess each-others’ work in partners. You can find worksheet 1 at the end of the PowerPoint on slide 17. The following slide explains substrate concentration and reaction rate with competitive, and then non-competitive inhibition. Students should use worksheet 2 (slide 18 of the PowerPoint) to take notes and answer the questions independently. When worksheet 2 is complete, define potassium cyanide and encourage a discussion between pairs about the danger of cyanide. Students should then complete the exam style questions from slide 19 and self-assess. If necessary, leave time for questions and discussion. The lesson concludes with a plenary task which asks students to write a tweet demonstrating what they’ve learned, their tweet should be no more than 140 characters and include #keywords. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Chemistry - The reactivity series
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - The reactivity series

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with students completing a ‘Think > Pair > Share’ activity whereby they need to consider some of the useful properties of metals Some example answers can be revealed using the PowerPoint presentation, some key word definitions are included for properties such as ‘malleable’ and ‘ductile’. The next task for pupils to complete is to decide which properties would be most suitable for a range of metal items - e.g. necklace, copper pipes. Pupils will now either observe alkali metals being dropped into water as a demo or watch a video demonstrating this practical. During which students should record their observations in a table. Students are now asked to predict what will happen if rubidium and caesium are dropped into water. A video can be played to reveal what happens when these two alkali metals react with water so that students can check their answers. Next, students are shown the general word equation for a reaction between a metal and water and will need to copy and complete for the reaction between potassium & water and lithium & water. Students can mark their work using the answers provided on the PowerPoint presentation. Pupils will now be shown four groups of metals and will need to match each group to the statement correctly describing the reactivity of those metals with water, their answers can be checked against the answers provided. The next activity is for pupils to carry out a practical to observe the reactions between different types of metal and dilute hydrochloric acid. Students can draw their results table in their books and then follow the procedure to carry out the investigation, using the results they can decide upon an order of reactivity of the metals they have observed. They can also carry out an evaluation for the practical procedure that they followed. The last part of the lesson focuses on the general word equation for when a metal reacts with an acid, students can use the example to complete the word equations for 5 more reactions between metals and dilute hydrochloric acid. Students can check their work against the answers provided on the PowerPoint presentation. The last task is a past-paper exam question, pupils can assess their work using the mark scheme provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Global Climate Change
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Global Climate Change

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly be given some data on the rise in global temperature over the last 150 years, they will firstly need to plot this data on a graph and then will need to answer a set of questions. Pupils will then focus on the different ways in which global climate change will affect the environment, each pupils will be given a different card of information and they will need to walk around the room and share with each other to complete the table of effects. The next part of the lesson will look at reducing greenhouse gas emissions, firstly students will watch a video which focuses on carbon dioxide emission reduction. Pupils will need to answer some questions whilst watching the video which can then be self-assessed using the mark scheme provided. After this, pupils will told ways in which methane emissions can be reduced. Pupils will now complete a ‘Think > Pair > Share’ task whereby they discuss what ‘Carbon footprint’ might mean and will try to come up with a definition, the actual definition is then revealed and pupils can mark their work, making corrections where needed. Pupils are now asked to come up with a mind map listing all the ways in which their actions contribute to their annual carbon footprint, once they have created a list they need to come up with an action plan of how to tackle this and reduce their overall carbon footprint. This task can be self or peer assessed using the mark scheme provided. The final part of the lesson is an outline of problems faced when trying to reduce your carbon footprint, pupils need to understand these issues. The plenary task gives pupils a list of answers, for each answer pupils need to come up with the question that would lead to that answer. All resources are included within the PowerPoint presentation, if you have any questions please email me at swift.education.uk@gmail.com. Any feedback would be greatly appreciated :) Thanks!
NEW AQA GCSE Chemistry (2016) - Group 1: The Alkali Metals
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry (2016) - Group 1: The Alkali Metals

(0)
This lesson is designed for the NEW AQA Chemistry GCSE, particularly the ‘Atomic Structure & Periodic Table’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with an introduction to the group that alkali metals are found in, this then is followed by a video about the metals where pupils will be required to answer questions, these can then be self-assessed. Next, the PowerPoint slides explain why, in terms of electronic configuration, the alkali metals increase in reactivity as you go down the group. Pupils can summarise this information using a fill-in-the-blank task, which can then be self-assessed. The reaction with alkali metals can then be modelled (practically you can show a demo of this) and pupils will need to be able to complete the word equation for this reaction, using a worked example of lithium and water pupils will need to fill int he word equations for other alkali metals. This work can be self-assessed. Pupils will then be given a set of information about the properties of alkali metals and about their reaction with oxygen and chlorine. Using this information pupils will need to complete questions, as well as compete work equations showing the reaction of various alkali metals with either oxygen or chlorine. Again, all answers to this work is provided so pupils can self or peer assess their work… The plenary task is a true or false task, which pupils could complete on their own at the back of their books. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Trophic levels & biomass
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Trophic levels & biomass

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction of food chains, pupils are asked to watch a video and answer a set of questions. Once complete pupils can self-assess their work. The next part of the lesson teaches students about trophic levels, firstly there is a diagram demonstrating the meaning of terms such as ‘producer’ and ‘primary consumer��� and how these correspond to trophic levels. Pupils can then have a go at matching the correct trophic level to the correct title, definition and example. Once complete pupils will self-assess their work using the mark scheme provided. Students can now have a go at constructing their own food chain or food web using a set of animals cards, once arranged they should write the order in their books and correctly level the trophic levels and whether the organism is a producer, a primary, secondary or tertiary consumer. The next part of the lesson focuses on biomass, firstly a definition is given to students and then they will need to watch a video on biomass and answer a set of questions. Once this task is complete they will be able to mark their work against the answers provided. The last task is for pupils to complete a worksheet on biomass, the answers can be written into their books and either peer r self-assessed once complete. The plenary task is for pupils to turn to the back of their books and write a detailed description of the flow of energy & changing biomass through a food chain using a selection of key words as prompts. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Monoclonal Antibodies
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Monoclonal Antibodies

(1)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on Monoclonal Antibodies and their uses begins with a review of antibodies, plasma b-cells and memory b-cells. Students should also describe the humoral immune response to a pathogen. Students are then introduced to monoclonal antibodies through description on the slides and a short video. They should take notes and be prepared to fill in a diagram using the statements on the slide. A complete diagram is on the following slide for self-assessment. The next slides introduce the use of monoclonal antibodies, and then explain how they may be used to target cancer cells, test for pregnancy, and create medical diagnoses. Students will then watch another video which explains pregnancy tests. They will answer a few questions while watching and may self-assess to the answers on the next slide. Another included task asks students to complete a table explaining how monoclonal antibodies are used in various methods, by using information cards posted throughout the room. Using this information students will think > pair > share to discuss ethical issues regarding the production of monoclonal antibodies. They will watch three short vidoes to inform their discussion and should include risks, benefits, and impacts on both the individual and society in their answers. Some sample discussion points are available in the notes below the slide. To consolidate, students will be given a mixture of information cards to sort into a table of advantages and disadvantages of monoclonal antibodies. The plenary task is to create a three-question quiz to test their peers on today’s lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Osmosis
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Osmosis

(1)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on Osmosis begins with a discussion to review diffusion and osmosis, students should think about what they remember from GCSE. After defining osmosis and water potential, students will watch a short video and answer worksheet questions. Answers are available on the next slide for self-assessment. To test the students’ knowledge, they will then practice identifying direction of movement from water potential of two plant cells. They can use mini whiteboards to pick a movement direction, or lack thereof! To further the lesson on water potential, students will consider isotonic, hypertonic, and hypotonic solutions. They will then practice matching these terms to their definitions before completing a worksheet to demonstrate how these conditions affect red blood cells. Answers for self-assessment are on the next slide. This information is synthesised by a quick discussion of osmosis in onion cells. Then, using their whiteboards to test their understanding of water potential, students will identify what is happening to cells in a series of pictures. Students will then practise by working through a few exam-style questions and self-assessing to the answers provided in the slides. As a plenary the students should write three sentences summarising what they have learned in this lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
OCR GCSE (9-1) Biology - The menstrual cycle
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The menstrual cycle

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. This lesson starts by pupils watching a video about the organs and hormones involved in the menstrual cycle, during which time they will need to answer questions on their worksheet. This work can then be red-pen assessed once they have finished. Pupils are then shown a set of diagrams which goes through the steps involved in the menstrual cycle, using the diagrams pupils are asked to discuss in pairs what they think is happening. After a short class discussion pupils will be given the series of diagrams and a set of jumbled statements, they will need to match the statements to the correct diagram to accurately describe what is happening in the menstrual cycle. For higher ability pupils you may want to just give them a set of key words for them to write their own statements below the diagrams. To summarise the role of each of the hormones in the menstrual cycle the next activity is a table and a set of key words, pupils need to fill in the blanks using the key words to correctly describe the role of each hormone. This can be assessed using the answers provided in the PowerPoint presentation. The next activity is a true or false activity on what pupils have learnt about this lesson, the plenary activity is a past-paper question on the hormone levels during pregnancy. The mark scheme for both these activities is provided for pupils to red-pen their work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
OCR GCSE (9-1) Biology - The role of negative feedback
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The role of negative feedback

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts by recapping on the role of negative feedback systems in homoeostasis, pupils will need to complete a flow diagram to demonstrate how a negative feedback system works. This can be completed in their books and marked using the answers provided. The next part of the lesson focuses on thyroxine and adrenaline, pupils are reminded of the roles of each of these hormones and they will then be given some extra information (provided) using which they will need to answers some questions on the topic. Detailed answers are provided for these questions so that pupils can check their work by either peer or self-assessment. The next activity is a ‘who am I?’ task, pupils will have covered a range of hormones by this point and will now be given a set of descriptions about different hormones, they can discuss with their partners and try to identify the names of each of them. Once completed this work can be assessed. The final task is an exam question about hormones, with the mark scheme provided. The plenary task is for pupils to write a text message to a friend describing what they have learnt in the lesson today!
OCR GCSE (9-1) Biology - Reaction Times Investigation
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - Reaction Times Investigation

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. This lesson begins by pupils being provided with the aim of the investigation plus an equipment list, pupils will need to use this to decide what the independent, dependent and control variables of the practical may be. The next slide runs through some of the important details of the practical, using this pupils will then need to write a step-by-step method summarising how they are planning to conduct their investigation, they can work in groups to plan this but must complete their own worksheet. Next, pupil will conduct the experiment to measure the effect of a distraction on student volunteers reaction time. Results should be collected using the worksheet provided, once they have collected their raw data they can use this (as well as the calculation provided) to work out the reaction time for each volunteer in each trial, and a mean can be calculated. Once the second table of results on the calculated reaction times have been filled in pupils can complete their graph of results, this can then be used to write a conclusion using prompt questions provided on the plenary slide of the PowerPoint presentation. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
OCR GCSE (9-1) Biology - Reflexes
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - Reflexes

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. Pupils will start the lessons by considering why a reflex action is important to living organisms and asking pupils to consider any examples they can think of. After revealing the importance of reflex actions and come examples, the slides then move on to look at the pathway an electrical impulse takes along a reflex arc. Pupils will delve a little deeper into this by watching a video, during which they can answer questions. Once this has been completed they can self-assess their work using the answers provided. This process can also be summarised using a copy and complete exercise. Next, the lesson focuses on synapse, a diagram of a synapse is shown with key details labelled, there is also a link to an animation that can be shown to demonstrate what occurs at the gap between neurons. After this has been demonstrated pupils are then asked to complete some tasks to show their understanding of what occurs at a synapse. The next activity involved a set of statements which are muddled up, pupils need to put them into the correct order to correctly describe the steps involved with a reflex arc. Once this has been completed pupils can assess their work using the model answer provided. The final activity is a past-paper question which can be printed for pupils or they can complete in their own books, this needs to be self or peer assessed once complete. The plenary task is for pupils to pick a task - either to summarise the work from the lesson using a list of key words or for pupils to come up with questions for the list of answers that are provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
OCR GCSE (9-1) Biology - The Eye
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The Eye

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. The lesson begins with a recap on the difference between a stimulus and a receptor and asks students to think>pair>share what the function of photoreceptors might be and where they are found. Pupils are then shown a diagram of an eye, pupils are asked to consider (from a list of structures provided) which labels might go where, they can discuss in pairs and annotate their own diagram if they know for sure. Pupils can then assess their own work when the answers are revealed on the next slide. Pupils must now learn the functions of each of these structures, they will each be given a slip of information about the function of one part of the eye and they should walk around the room and share their information to complete the table in their books. This task can be self-assessed using the answers provided. The next part of the lesson focuses on the pupil reflex, firstly a practical is undertaken whereby pupils block out light from the room and then observe what happens to their partners pupils when they bring a torch to the side of their partners eye. This leads into a description of the pupils reflex, including the role of the circular and radial muscles. Pupils will need to summarise this information by copying and completing the sentences into their book, which can be self-assessed once completed. The last activity is looking at how light is focused on the retina by the lens, pupils are shown a diagram of how this works. After being given a verbal description they are asked to firstly copy the diagram complete with labels and explain how light is focused on the retina using a list of key words that are provided. The plenary task is an exam question on what the students have learnt this lesson, pupils should complete this in silence in their books and then red-pen their work using the mark scheme provided once they have finished. All resources are included at the end of the presentation. Thanks for looking :)
OCR GCSE (9-1) Biology - The human nervous system
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The human nervous system

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. This lesson begins by looking an organism - a cat- and asking pupils to think about the types of stimulus the cat might respond to in it’s environment, plus which organs it needs to sense these stimuli. Pupils will brainstorm their ideas and then self-assess their work once the answers are revealed, additionally they will answer an exam question on this topic. Next, pupils focus on the effectors and their role in the nervous system. Pupils will be provided with a description of the role of muscles and glands as effectors and will then need to complete an exam question to assess their knowledge, mark scheme provided for either peer or self-assessment. The next part of the lesson will focus on neurons, firstly a diagram of a neuron cell is shown and pupils need to think about how this cell is similar and different to a normal animal cell. Pupils may discuss this in pairs and try and come up with an answer before the mark scheme is revealed. Sensory and motor neurons are now introduced via an animation, pupils can look at the pathway the electrical impulse travels as it moved around the nervous system. Pupils will use this to then copy and complete a summary to describe this process, when completed this can be self-assessed. The final activity is for pupils to copy and complete a table to sum up the main functions of each part the human nervous system either by using a card sort or by putting the statements on the board. This can then be peer or self-assessed when complete The plenary activity is for pupils to summarise the 5 main key words they have learnt that lesson. All resources are included at the end of the presentation. Thank you!
OCR GCSE (9-1) Biology - The endocrine system
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The endocrine system

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. This lesson begins with a recap on the structures and function of the endocrine system, it then moves on to look at the positions of the different glands involved in the endocrine system. Pupils are shown an image of a human body (also can be given as a worksheet) and should discuss in pairs which glands fall into which position on the diagram. After the answers have been revealed, and are then assessed, pupils will now need to discuss the function of each of the glands. From a list of descriptions, pupils should try and match the name of the gland to the hormone it produces, this work can then be self-assessed. In the next activity pupils are required to draw a table and then in groups/per table they are given a set of cards which they then need to sort into the correct spaces on their table to summarise the main role of the hormones secreted by 5 glands - the pituitary, the thyroid, the pancreas, the ovaries and the testes. This work can then be assessed using the answers provided. Pupils can then complete a ‘silent 5’ set of questions on the topic they have covered so far, they should try and complete the questions on their own but for lower ability groups they may want to try discuss in pairs before answering. The final activity is an exam paper question on hormone levels, once completed pupils can use the mark scheme to mark their own work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
OCR GCSE (9-1) Biology - The brain
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The brain

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. The lesson begins with an overview of the function of the four main lobes of the brain, pupils will be given cards of information which they need to use to complete a table on these functions. Pupils will then be introduced to further structures which they are required to know the functions of: medulla, cerebellum, hypothalamus and cerebral cortex. Pupils will need to use posters to complete a worksheet where they label a diagram of the brain and outline the roles of each of these structures. Following this is a card sort where pupils can assess their understanding of what they have just learnt. The next part of the lesson focuses on how scientists and doctors have gained evidence for the structure and function of the brain. Firstly students will watch a video and answers questions on Phineas Gage, which can be self-assessed once complete. This will then go on to describe the role of electrical brain stimulation and MRI scans in providing knowledge about the brain. This is assessed with a copy and complete summary sentence task and finally the plenary is a 6-mark exam question. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Resultant Forces
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Resultant Forces

(0)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Forces in Action’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to force diagrams, students are given some information about how arrows can show the direction and size of forces acting upon an object. Students will then need to add force arrows to a diagram of a brick falling, this task can then be checked against the answer provided. Students are now shown a ‘Tug of war’ diagram, students are asked to ‘Think > Pair > Share’ their ideas about which side would win and why. After a short class discussion, students are now introduced to the idea of balanced and unbalanced forces, using ‘tug of war’ images as examples. Students are then given some information outlining how the motion of an object is affected by balanced/unbalanced forces acting upon it. Students will now complete a forces circuit to consider the type and size of forces acting upon different objects in the circus, students will need to identify the type/size of the forces and decide whether they are balanced or unbalanced. This task can be self-assessed once it is complete. Students will now be introduced to the definition of resultant forces, and will be shown some examples of how to calculate resultant force using ‘tug of war’ examples again. Students will now complete a couple of tasks to assess their knowledge of what they have learned so far on resultant forces, both tasks can be self-assessed using the mark scheme provided in the PowerPoint presentation. Lastly, students are shown how to draw ‘Free-body Force Diagrams’, an example is given before students are asked to draw their own onces using the two scenarios provided. The work can be marked and corrected using the mark scheme provided. The plenary task requires students to write a Whatsapp message to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Nuclear Fission & Nuclear Fusion
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Nuclear Fission & Nuclear Fusion

(2)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson with a ‘Think > Pair > Share’ task where students will consider what they think may be happening during a ‘Nuclear Fusion’ or ‘Nuclear Fission’ reaction. Once students have fed back as a class discussion, the definitions for each process can be revealed using the PowerPoint. Students will now watch a video outlining the basic principles of these two processes, whilst watching the video they will answer a set of questions. Once this work has been completed they can self-assess using the mark scheme provided. Next, students are shown a diagram of a chain reaction, students will need to sketch a cope of this into their books alongside an explanation of this process in context of nuclear fission. The next activity requires students, in pairs, to teach each other about the principles of a nuclear reactor vs. fusion reactor, after being given a set of information on the topic. Students will then need to answer a set of questions into their books about these two types of reactors, the work can be self-assessed using the mark scheme provided. Lastly, students will complete a radioactivity crossword based upon knowledge they have learned throughout the radioactivity topic, the answers to this task is also included so pupils can mark their own work. The plenary requires students to complete a set of sentence starters to summarise what they have learned this lesson, what they already knew about this topic before the lesson and what they would like to learn more about. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Biology - Smoking
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Biology - Smoking

(0)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with some facts and figures about the rates of smoking around the world, how many cigarettes are smoked daily and the different chemicals found in cigarette smoke and which of these are linked with disease. Students will now watch a video on the chemicals found in cigarette smoke and the damage these chemicals can do to the body, whilst watching the video students will need to answer a couple of questions. The answers to these questions are then revealed using the PowerPoint, students can self-assess their work. Students will now watch another video on smoking and the effect on your health, students will be given a set of questions that they will need to answer using the video. Once this task is complete, students will self-assess their work using the mark scheme provided. The latter part of the lesson involves an activity whereby students will be given a worksheet of questions, there will be information posters placed around the room which students will need to use to answer questions on their worksheet. The mark scheme for this task is included in the PowerPoint presentation for students to peer-assess their work with their partners. The last task is for partners to complete a ‘feedback quadrant’ of their partners work, this includes a positive comment, something they missed out which should have included and a question to test their understanding of the lesson content. The plenary activity requires students to complete a 3-3-1 reduction - 3 facts, 3 key words and then reduce this to 1 key word from the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
OCR GCSE (9-1) Biology - The circulatory system
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The circulatory system

(0)
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway) Biology 'Scaling up’ scheme of work. The lesson begins by completing an activity which recaps the role of each of the components of blood. Pupils are then introduced to the three types of blood vessels - artery, vein and capillary. Looking at a diagram provided pupils will need to consider the differences between the three in terms of structure an function. Pupils will then watch a video and answer questions about arteries and capillaries, the answers to the video are provided so that pupils can then self-assess their work. The next slide will show how veins are structured and how they work to move blood back to heart from the rest of the body. Pupils could draw a diagram to represent this if there was time. The next part of the lesson is the longest activity, pupils will need to either copy the blank table into their books or be given a printout of the table. Using cards of information pupils will need to complete the table, which shows the structural features of each of the blood vessels. The answers to this activity are provided so that pupils can either peer or self-assess their work. The next activity is a quick fill-in-the-blank task to demonstrate the role of the capillaries within the body. Students are now introduced to the idea of a double-circulatory system, using a diagram and a description of the system pupils will need to answer questions about the role of this system, which can then be self-assessed. The plenary task is for pupils to pick one question to answer from a list of traffic-light questions, green for most difficult and red for easiest.
OCR GCSE (9-1) Biology - Exchange & Transport
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - Exchange & Transport

(0)
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway) Biology 'Scaling up’ scheme of work. This lesson begins with pupils shown a picture of an amoeba and one of a polar bear, they will need to discuss the difference between the organisms in terms of how they take in oxygen from their environment. Once you have shared a few ideas from the pupils with the class you can show the pupils the difference between the two organisms - amoeba can rely on simple diffusion whereas larger multicellular organisms need specialised exchange surfaces. Pupils are then shown three examples of exchange surfaces - alveoli, small intestine and leaves of plants - they will need to think about how these structures might be adapted to exchange materials efficiently. You could have a short class discussion to develop these ideas. Once you have again discussed these factors with the class you can reveal the next slide which outlines the 4 main features of an efficient gas exchange surface. Pupils will then be given a worksheet and they will need to move around the room reading posters of information about villi and alveoli to complete the worksheet. This should take approximately 20 minutes, once finished pupils can peer-assess their work using the answers provided with the PowerPoint presentation. The plenary is an Exit Card pupils will complete and pass to you on the way out of the door, this requires pupils to write down 3 key words, one fact and a question to test their peers knowledge of what they have learnt about in the lesson today.