I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a starter review to remind students of the role of diffusion in glucose absorption, the process of co-transport, and the role of microvilli.
Students are then guided through a summary of defence mechanisms, subdividing them as non-specific (physical barriers and phagocytosis) and specific (cell-mediated and humoral responses). Students should keep this in mind before trying to name some of the physical barriers to infection in the human body. Sample answers are on the next slide for self-assessment, and students should consider which of the answers were physical or chemical barriers.
The next task is to consider three questions about the human body’s defence mechanisms in the stomach, skin, and trachea. After seven minutes students should self-assess to the answers on the following slide.
To defend the body, lymphocytes must be able to distinguish the body’s own cells, students are asked to decide which biological molecules would most likely be used for this and where they are found. The next slide explains the immune system’s identification ability and asks students to consider the medical implications of self-defence responses. The example of organ and tissue donation is explained on the following slide, there are plenty of notes below the slide as well.
If physical barriers fail, white blood cells are next, so students are then introduced to phagocytes and lymphocytes over the next few slides.
Students will then watch a short video and follow along with their worksheet to fill in boxes and summarise phagocytosis. Answers are on the next slide for self-assessment.
The next task is interactive! Students will use information stations around the classroom to complete their table on non-specific immune response.
The plenary task is to draft a 140-character tweet demonstrating what they have learned today including #keywords.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway) Biology 'Scaling up’ scheme of work.
This lesson begins with pupils shown a picture of an amoeba and one of a polar bear, they will need to discuss the difference between the organisms in terms of how they take in oxygen from their environment. Once you have shared a few ideas from the pupils with the class you can show the pupils the difference between the two organisms - amoeba can rely on simple diffusion whereas larger multicellular organisms need specialised exchange surfaces.
Pupils are then shown three examples of exchange surfaces - alveoli, small intestine and leaves of plants - they will need to think about how these structures might be adapted to exchange materials efficiently. You could have a short class discussion to develop these ideas.
Once you have again discussed these factors with the class you can reveal the next slide which outlines the 4 main features of an efficient gas exchange surface.
Pupils will then be given a worksheet and they will need to move around the room reading posters of information about villi and alveoli to complete the worksheet. This should take approximately 20 minutes, once finished pupils can peer-assess their work using the answers provided with the PowerPoint presentation.
The plenary is an Exit Card pupils will complete and pass to you on the way out of the door, this requires pupils to write down 3 key words, one fact and a question to test their peers knowledge of what they have learnt about in the lesson today.
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway) Biology 'Scaling up’ scheme of work.
This lesson begins by identifying the purpose of mitosis - growth and repair. Pupils will then be given a double-sided worksheet, the first side corresponds to the first 5 mins 51 seconds of the video included in the PowerPoint slide. Pupils will need to watch the video and answer the questions on the sheet, they are in order but for lower ability classes you may want to stop the video and guide pupils through the work. Self-assess this work using the answers provided in the PowerPoint before moving on with the video.
The next part of the video guides pupils through what happens during Mitosis - Prophase, Metaphase, Anaphase, Telophase. Pupils have diagrams of the the processes on the back of their worksheet, they will need to use the video to name the stages and describe what is happening. Self-assess work using the answers that are provided in the PowerPoint.
The next activity, pupils are given real images of a cell going through mitosis and descriptions of the stages, they need to cut and stick the stages and the pictures in the correct order to complete a flow diagram. Pupils peer or self-assess their work using red/green pens.
Past-paper question provided as an extra activity for higher-ability pupils - pupils answer the question in their books and peer-assess using the mark scheme
Resources are included in the PowerPoint, thank you for looking :)
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway) Biology 'Scaling up’ scheme of work.
This lesson begins by pupils being introduced to the idea of stem cells, what they are and why they are important. Pupils will then watch a video about stem cells, the difference between adult and embryonic stem cells and their importance in medical research and treatments. Pupils will answer questions whilst watching the video and can self-assess their work using the answers provided once it has finished.
Pupils will then need to summarise what they have learnt so far by completing a fill-in-the-blank task, this can be copied off the board or summarised in their book.
The next activity is on stem cells in plants, pupils will be given some information on the board and will then need to answer questions about this information.
The next activity will focus on the social, moral and ethical implications of using stem cells for medical research purposes. Pupils will need to read opinion/fact cards about the use of stem cells and firstly will need to discuss the pros and cons of using stem cells for medical research. The second task is for pupils to sort the information cards into ‘fact’ or ‘opinion’ columns - this can be self-assessed using the answers provided.
The final plenary task is an exam-style question about use of stem cells, pupils can then self-assess their work.
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway) Biology 'Scaling up’ scheme of work.
This lesson begins with a definition for osmosis and defining the difference between solvent and solutes. Pupils are then asked to think > pair > share about what they think a partially permeable membrane might be.
In the next activity, pupils are given a definition for concentrated and dilute solutions and are shown three different diagrams, they need to decide whether they are showing pure water, a concentrated or a dilute solution.
Now pupils are introduced to isotonic, hypertonic and hypotonic solutions. They are firstly shown what happens to animals cells in each of these solutions using an animation. Pupils will then need to match the type of solution to it’s description and also complete a cartoon strip to explain what happens to animal cells in each of these solutions, a list of key words is provided.
Students will then think about the importance of osmosis to plants and will need to match diagrams of plant cells in isotonic/hypertonic/hypotonic solutions to the correct description.
The last activity is an exam-style question on osmosis, pupils can self-assess their work using the mark scheme provided.
The plenary task is for pupils to write 5 summary sentences about what they have learnt so far using the list of key words provided.
All resources are included in the PowerPoint presentation, thank you for purchasing :)
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway) Biology 'Scaling up’ scheme of work.
The lesson begins by identifying the differences between osmosis, diffusion and active transport. Pupils will then watch a video and answer questions about the process of active transport whilst watching. Once finished pupils can self-assess their work using the answers provided.
Pupils will then sort statements about the three types of movement - diffusion, osmosis, active transport - into three columns, pupils will then self-assess their work.
The next part of the lesson focuses on the importance of active transport to living organisms, pupils will be introduced to two examples - mineral ion uptake in plants and absorption of glucose in humans. Pupils will then need to answer questions on this topic.
The plenary is a exam-style question on active transport, pupils can again self-assess their work using the mark scheme provided.
All resources are included in the PowerPoint :)
This lesson is designed to meet specification points for the NEW AQA Trilogy GCSE Biology ‘Scaling up’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Pupils will firstly be introduced to guard cells and stomata and how they are able t control the loss of water from the plant, diagrams of guard cells turgid and flaccid will help with this description.
Pupils will then be given a set of questions which they will complete using a video, once completed pupils can then assess their work using the answers provided.
The next slide shows the process of transpiration, pupils are shown a diagram and then descriptions of each stage in the transpiration process are shown stage by stage. You may need lower ability pupils to copy the stages up off the board in note form first. For higher ability pupils after you have gone through it a couple of times you can move the slide forward and pupils will need to write a description of the process of transpiration using the list of key words and diagram as a cue.
After this has been completed pupils will then focus on the factors affecting the rate of transpiration, pupils will each be given a slip of information about a factor and how it affects the loss of water from the plant. Pupils will need to swap information with those around them to complete their table. If pupils do not quite finish this task they can assess their work using the completed table provided in the PowerPoint.
The last activity is for pupils to complete exam questions on the topic of the lesson. Pupils will be given 6 minutes as it is worth 6 marks, they should try and complete the question in silence at the back of their books if possible.
The plenary task is for pupils to write down 6 key words from the lesson.
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway) Biology 'Scaling up’ scheme of work.
The lesson begins with children being asked to discuss their ideas about the environmental factors which would affect the rate of transpiration.
After a short class discussion, children will be given a slip of information about one of the four factors affecting the rate of transpiration - light intensity, humidity, temperature and wind. Children will need to walk around the room and share information with each other, to complete their table of information in their books. This task can be self-assessed once complete.
Next, children will watch a video on the use of a potometer, during which they will need to answer a set of questions. After this, they can self-assess their work using the answers provided.
Children will now be shown how to calculate the rate of transpiration, using a worked example. Children will then test their understanding of this by completing a ‘quick check’ task, the answers for this are provided in the PowerPoint.
The plenary task required pupils to compile a list of key words related to the B2 ‘Scaling up’ module of learning.
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway) Biology 'Scaling up’ scheme of work.
The lesson begins by pupils observing a diagram of a phloem and a xylem vessel and discussing what the similarities and differences are between the two tissues. This can lead into a class discussion about the two structures.
Next is a quick recap task, pupils should have already looked at the overall function of both of these vessels so pupils now need to complete sentences to describe the role of the xylem an phloem vessel in plants.
The next activity is a video, pupils will given a set of questions and they will need to answer these questions using the video. Once finished they can self-assess their work using the answers provided on the PowerPoint.
Next, pupils will need to draw two columns in their book entitled Xylem and Phloem and sort statements into these two columns, after this is completed they can assess their work.
The last thing students will need to consider is why is transport so important in plants, pupils will discuss/brainstorm in their books why sugars, mineral ions and water are important to the plant. The answers can then be revealed to them.
The final activity is a past-paper 6 mark question, pupils will need to attempt to answer this on their own, at the back of their books for an extra challenge!
Plenary activity is to complete a summary of what the students have learnt that lesson, a list of key words will be provided to help them complete this task.
All resources are included in the PowerPoint, any questions please ask me via the comments section. Any feedback of this lesson would be much appreciated :) thank you!
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work.
This lesson starts by pupils watching a video about the organs and hormones involved in the menstrual cycle, during which time they will need to answer questions on their worksheet. This work can then be red-pen assessed once they have finished.
Pupils are then shown a set of diagrams which goes through the steps involved in the menstrual cycle, using the diagrams pupils are asked to discuss in pairs what they think is happening. After a short class discussion pupils will be given the series of diagrams and a set of jumbled statements, they will need to match the statements to the correct diagram to accurately describe what is happening in the menstrual cycle. For higher ability pupils you may want to just give them a set of key words for them to write their own statements below the diagrams.
To summarise the role of each of the hormones in the menstrual cycle the next activity is a table and a set of key words, pupils need to fill in the blanks using the key words to correctly describe the role of each hormone. This can be assessed using the answers provided in the PowerPoint presentation.
The next activity is a true or false activity on what pupils have learnt about this lesson, the plenary activity is a past-paper question on the hormone levels during pregnancy. The mark scheme for both these activities is provided for pupils to red-pen their work.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson starts by recapping on the role of negative feedback systems in homoeostasis, pupils will need to complete a flow diagram to demonstrate how a negative feedback system works. This can be completed in their books and marked using the answers provided.
The next part of the lesson focuses on thyroxine and adrenaline, pupils are reminded of the roles of each of these hormones and they will then be given some extra information (provided) using which they will need to answers some questions on the topic. Detailed answers are provided for these questions so that pupils can check their work by either peer or self-assessment.
The next activity is a ‘who am I?’ task, pupils will have covered a range of hormones by this point and will now be given a set of descriptions about different hormones, they can discuss with their partners and try to identify the names of each of them. Once completed this work can be assessed.
The final task is an exam question about hormones, with the mark scheme provided.
The plenary task is for pupils to write a text message to a friend describing what they have learnt in the lesson today!
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work.
The lesson begins with an overview of the function of the four main lobes of the brain, pupils will be given cards of information which they need to use to complete a table on these functions.
Pupils will then be introduced to further structures which they are required to know the functions of: medulla, cerebellum, hypothalamus and cerebral cortex. Pupils will need to use posters to complete a worksheet where they label a diagram of the brain and outline the roles of each of these structures. Following this is a card sort where pupils can assess their understanding of what they have just learnt.
The next part of the lesson focuses on how scientists and doctors have gained evidence for the structure and function of the brain. Firstly students will watch a video and answers questions on Phineas Gage, which can be self-assessed once complete. This will then go on to describe the role of electrical brain stimulation and MRI scans in providing knowledge about the brain. This is assessed with a copy and complete summary sentence task and finally the plenary is a 6-mark exam question.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on co-transport and absorption of glucose in the ileum begins with a starter discussion which asks students to compare and contrast transport and diffusion. They are also asked to discuss the importance of transport rather than diffusion in regard to reabsorption in the kidneys.
The first task is a microscope activity for students to work in partner pairs and investigate adaptations of the epithelial cells of the ileum. Students will set up their light microscope to examine prepared slides and answer some questions. Answer samples are in the notes below the slides.
The following slides define villi and microvilli for students to note in their books. There is a brief explanation of the relationship between increased surface area and space for carrier proteins.
Students are then introduced to the role of diffusion in absorption and should take clear notes regarding facilitated diffusion. They should use the diagram on the slide to discuss why glucose concentration differs between epithelial and ileum cells. Relying on diffusion will only result in the concentrations either side of the intestinal epithelium becoming equal. Students should discuss why this is a problem, and how it might be overcome.
The next slide is a complete diagram explaining co-transport of amino acids or glucose molecules. Students should take notes in their books because the next task is to complete a cartoon of this process and summarise the main steps.
Students are then asked to ‘think > pair > share’ about the co-transport process and decide whether it is a direct or indirect form of active transport. They should use the details on the slide to inform their discussion.
The final task is an exam-style question, with a mark scheme on the following slide for students to self-assess and consolidate their learning from this lesson.
The plenary task is to either; summarise the lesson in three sentences, or complete definitions for five key-terms from the lesson.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a little challenge for students to calculate the actual size of a specimen and complete three measurement conversions.
The first outcome is for students to begin to understand graticules and their use. The following slides define eyepiece graticules and explain how to calibrate the eyepiece properly. Students will also watch a short video before working though example (b).
Students will then practice calculating magnification to understand the relationship between the eyepiece graticule scale and the stage micrometer scale. To practise their learning students will complete the Calibrating an Eyepiece Graticule worksheet.
The next task is to practise calibrating the eyepiece and measure three onion cells. Students will also be asked to complete a biological drawing of their onion cells, and examples of poor and quality drawings are provided in the slides with more detailed expectations.
Students will then consolidate their learning by completing an exam-style question, answers are provided on the following slide for self-assessment.
The plenary task is a quick exit card, students should write thee things they’ve learnt, five key words, and on question for their peers about this lesson.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work.
This lesson begins by pupils being provided with the aim of the investigation plus an equipment list, pupils will need to use this to decide what the independent, dependent and control variables of the practical may be. The next slide runs through some of the important details of the practical, using this pupils will then need to write a step-by-step method summarising how they are planning to conduct their investigation, they can work in groups to plan this but must complete their own worksheet.
Next, pupil will conduct the experiment to measure the effect of a distraction on student volunteers reaction time. Results should be collected using the worksheet provided, once they have collected their raw data they can use this (as well as the calculation provided) to work out the reaction time for each volunteer in each trial, and a mean can be calculated.
Once the second table of results on the calculated reaction times have been filled in pupils can complete their graph of results, this can then be used to write a conclusion using prompt questions provided on the plenary slide of the PowerPoint presentation.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work.
Pupils will start the lessons by considering why a reflex action is important to living organisms and asking pupils to consider any examples they can think of. After revealing the importance of reflex actions and come examples, the slides then move on to look at the pathway an electrical impulse takes along a reflex arc. Pupils will delve a little deeper into this by watching a video, during which they can answer questions. Once this has been completed they can self-assess their work using the answers provided. This process can also be summarised using a copy and complete exercise.
Next, the lesson focuses on synapse, a diagram of a synapse is shown with key details labelled, there is also a link to an animation that can be shown to demonstrate what occurs at the gap between neurons. After this has been demonstrated pupils are then asked to complete some tasks to show their understanding of what occurs at a synapse.
The next activity involved a set of statements which are muddled up, pupils need to put them into the correct order to correctly describe the steps involved with a reflex arc. Once this has been completed pupils can assess their work using the model answer provided.
The final activity is a past-paper question which can be printed for pupils or they can complete in their own books, this needs to be self or peer assessed once complete.
The plenary task is for pupils to pick a task - either to summarise the work from the lesson using a list of key words or for pupils to come up with questions for the list of answers that are provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work.
The lesson begins with a recap on the difference between a stimulus and a receptor and asks students to think>pair>share what the function of photoreceptors might be and where they are found.
Pupils are then shown a diagram of an eye, pupils are asked to consider (from a list of structures provided) which labels might go where, they can discuss in pairs and annotate their own diagram if they know for sure. Pupils can then assess their own work when the answers are revealed on the next slide. Pupils must now learn the functions of each of these structures, they will each be given a slip of information about the function of one part of the eye and they should walk around the room and share their information to complete the table in their books. This task can be self-assessed using the answers provided.
The next part of the lesson focuses on the pupil reflex, firstly a practical is undertaken whereby pupils block out light from the room and then observe what happens to their partners pupils when they bring a torch to the side of their partners eye. This leads into a description of the pupils reflex, including the role of the circular and radial muscles. Pupils will need to summarise this information by copying and completing the sentences into their book, which can be self-assessed once completed.
The last activity is looking at how light is focused on the retina by the lens, pupils are shown a diagram of how this works. After being given a verbal description they are asked to firstly copy the diagram complete with labels and explain how light is focused on the retina using a list of key words that are provided.
The plenary task is an exam question on what the students have learnt this lesson, pupils should complete this in silence in their books and then red-pen their work using the mark scheme provided once they have finished.
All resources are included at the end of the presentation. Thanks for looking :)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work.
This lesson begins by looking an organism - a cat- and asking pupils to think about the types of stimulus the cat might respond to in it’s environment, plus which organs it needs to sense these stimuli. Pupils will brainstorm their ideas and then self-assess their work once the answers are revealed, additionally they will answer an exam question on this topic.
Next, pupils focus on the effectors and their role in the nervous system. Pupils will be provided with a description of the role of muscles and glands as effectors and will then need to complete an exam question to assess their knowledge, mark scheme provided for either peer or self-assessment.
The next part of the lesson will focus on neurons, firstly a diagram of a neuron cell is shown and pupils need to think about how this cell is similar and different to a normal animal cell. Pupils may discuss this in pairs and try and come up with an answer before the mark scheme is revealed. Sensory and motor neurons are now introduced via an animation, pupils can look at the pathway the electrical impulse travels as it moved around the nervous system. Pupils will use this to then copy and complete a summary to describe this process, when completed this can be self-assessed.
The final activity is for pupils to copy and complete a table to sum up the main functions of each part the human nervous system either by using a card sort or by putting the statements on the board. This can then be peer or self-assessed when complete
The plenary activity is for pupils to summarise the 5 main key words they have learnt that lesson.
All resources are included at the end of the presentation. Thank you!
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on mitosis begins with a review of cells, viruses, and a discussion about the differences between mitosis and meiosis.
To begin discussing mitosis, students will watch a short video describing the cell cycle and make notes on a worksheet. They can self-assess with the following slide and discuss any missing information.
The next few slides are lecture style, they teach chromosome structure and define mitosis. Students should answer the discussion question “why is mitosis such an important process in organisms?” To check their discussion, points to note can be found in the ‘notes’ section under the slide.
The lesson then defines each phase of mitosis before asking students to complete a jumbled sentence activity to synthesise their notes on the phases. The worksheet features jumbled sentences, and diagrams of the phases of mitosis for matching. The un-jumbled sentences are in the following slide so students may self-assess their worksheets.
The next section defines cytokinesis in plant and animal cells then asks students to identify the stages of mitosis by microscopic images. They should give reasons for their choices and the answers can be found in the ‘notes’ part of the slideshow. This activity is built on through a mini-whiteboard activity in which students should identify the stages of the cell cycle and explain what is happening during this stage.
The lesson ends with an exam style question which asks students to explain how mitosis leads to two identical cells. A mark scheme for this question is on the following slide.
The plenary task is to complete a sentence in their book reflecting on their learning throughout the lesson.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Organisms & their Environment’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins by reminding students of the four general things that need to be exchanged between an organism and their environment and the three factors which may affect the rate of diffusion. This discussion leads into the first few slides which explain how an organism like an amoeba gets the substances it needs.
A worksheet is included for this lesson for students to complete as they take notes throughout.
An amoeba is used as an example of a unicellular organism, which is then compared to insects. The following slides explain the basic form and function of insects, then the process by which they exchange water and O2.
Students should take thorough notes on the spiracle, trachea and tracheoles in their books. The slides in this lesson are lecture based and very detailed, students will want to be sure they have a good understanding of the three ways that respiratory gasses move in and out of the tracheal system. The slides explain that gasses move along a diffusion gradient, through mass transport, and as the tracheoles fill with water.
A quick check of exam-style questions and mark scheme follows to help students assess their learning.
The plenary task is a true or false activity!
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)