I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a review of total magnification and cell fractionation before defining the two main advantages of the electron microscope.
The following slides offer detailed notes on the parts of the electron microscope and their functions. Students will then fill in a table in their books using information notes which have been posted around the room. A self-assessment slide follows!
Students are then introduced to SEM and TEM and encouraged to compare the two before practising through a mini-whiteboard activity!
To consolidate the lesson, students will complete an exam-style question and self-assess to the following slide.
The plenary task is a series of answers for students to write the questions for.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a lesson aimed at the new OCR GCSE Gateway Science B1 - ‘Cell-level systems’ SoW.
The lesson begins by identifying examples of prokaryotic and eukaryotic cells, pupils can begin to think about the structural differences between these two types of cells.
Next, pupils are given a worksheet plus an additional card of information on either the structure or function of a bacteria cell. Pupils will need to walk around the room and trade the information on their card with others to fully complete a labelled diagram of a bacteria cell and descriptions of the functions for each structure.
Once completed pupils can peer or self-assess their work using the information within the PowerPoint slide.
The next activity requires pupils to apply their knowledge of the structure of bacteria (prokaryotic) cells and compare this to the structure of eukaryotic cells, pupils need to construct a list/table in their books to identify the similarities and differences between these two cells. Pupils can then self-assess their work against the list provided in the PowerPoint slide.
The next activity is an assessment activity, pupils will need to complete the past-paper question in their books and again self/peer-assess their work using red pens.
The final activity involves a list of ‘True/False’ statements, to gauge the progress of the class this could be completed by students holding up red/amber/green cards to identify whether they think the statement is true or false.
All resources are included in the PowerPoint presentation, please review to provide me with feedback :). Thank you.
This lesson is designed for the NEW OCR GCSE (Gateway Science) Biology B1 ‘Cell-level systems’ SoW.
This lesson begins with a review of magnification and resolving power, as well as defining the two main advantages of the electron microscope.
The following slides offer detailed notes on the parts of the electron microscope and their functions. Students will then fill in a table in their books using information notes which have been posted around the room. A self-assessment slide follows!
To consolidate the lesson, students will complete an exam-style question and self-assess to the following slide.
The plenary task is a series of answers for students to write the questions for.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway Science) Biology B1 - ‘Cell-level systems’ SoW.
For more resources please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by pupils completing a comprehension task, they will need to read details on the history of the microscope and answer questions into their books. Once finished pupils will need to then self-assess their work using the answers provided in the PowerPoint presentation.
The next part of the lesson focuses on the structure of a light microscope, and how to use it to view a specimen, including different ways in which stains can be used in light microscopy. Students will watch a video, and will need to answer questions in their books, before self-assessing their work.
Pupils are then introduced to the idea of ‘resolution’ - the definition for which they need to know so pupils could write this down in their books.
The next part of the lesson will focus more on maths skills related to microscopy, pupils will firstly need to calculate the overall magnification of a microscope using the objective lens and eyepiece lens magnifications. The next skill pupils will learn is to change units of measurement from cm > mm > um > nm.
The next calculation pupils will need to know is how to calculate the actual size of a specimen being observed down a microscope. Pupils will be introduced to the calculation and then given a couple of example questions, pupils can attempt to have a go at these themselves. The following slide goes through step-by-step how you would calculate the answers to these questions.
The plenary is a ‘Silent 5’ task where pupils will need to answer questions based upon what they have learnt during the lesson.
This a revision lesson aimed at AQA B1 Core Science topics on nervous and hormonal control.
Pupils begin the lesson looking at the differences between nervous and hormonal control and assessing their current knowledge on the topics by looking at a set of learning objectives and marking them green, amber or red. Students then go on to complete a revision worksheet on the topic areas and will then re-assess their ability to meet the learning objectives, hopefully showing progress! The page numbers to help the students complete the work are on the sheet, these page numbers are specific to the green Science A text books for the AQA course.
Pupils will finish the lesson by completing a past-paper question and peer-assessing their work.
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a ‘Carbohydrates’ true or false activity, students can answer these questions on their mini whiteboards. This will give you an understanding of knowledge attained at GCSE level on this topic.
Students are then introduced to the differences between monosaccharides and discaccharides, and provided with examples of sugars in each of these categories. Students are also introduced to the differences between hydrolysis and condensation reactions, they can have a go at drawing examples of these reactions using the mini whiteboards. After this section of the lesson, students will sort statements into two columns - either describing a condensation or a hydrolysis reaction.
Students are also introduced to the three polysaccharides - starch, glycogen and cellulose - but we will cover these carbohydrates in more details in another lesson.
Students are shown the test for reducing and non-reducing sugars, they need to be able describe the steps involved with both these food tests, as well as state the positive result for each test.
The last part of the lesson focuses on assessment, students will firstly answer a set of questions about what they have learned this lesson. This task can then be self-assessed using the mark scheme provided. Lastly, students will complete an exam question on this topic, which they can then swap with their partner to peer-assess.
The plenary task requires students to summarise what they have learned in 3 facts, 3 key words and with 1 question posed to their peers.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a brief introduction to the three main polysaccharides that students need to know about at A-level Biology level - starch, glycogen and cellulose. Students will then complete a ‘Prior Knowledge’ quiz so you can gain an understanding of their depth of knowledge around this topic area, this task can be self-assessed using the mark scheme once complete. I would also probably collect in the quizzes, so I can ascertain the level different students are working at.
Students will now divide into 6 groups, each group will study either starch, glycogen or cellulose. Students will be given an information poster on either of these polysaccharides, and will need to answer a set of questions (provided on the PowerPoint slide). Once complete, students will then share their answers with a group which studied a different polysaccharide, and will need to complete a summary table to assess the similarities and differences between all three. This task can be self-assessed using the mark scheme provided.
Lastly, students will need to learn the test for starch - the steps as well as the colours shown for a negative/positive result. They can take notes on this test in their books.
The plenary task requires students to write a twitter message to demonstrate what they have learned today, including #keywords.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with an introduction to enzymes and a starter discussion to review the structure of amino acids and the quaternary structure of proteins.
Students will then watch a short video and work independently to answer review questions from the video. The following slide offers brief answers to these questions so that students may self-assess.
The lesson then progresses through a series of lecture style slides explaining enzyme involvement in chemical reactions, the structure of enzymes, and the two models of enzyme action.
Following these slides, students have an opportunity to work in pairs to teach each other the two enzyme action models. The information for each student in their pairs is provided as the last slide in the lesson. Students should take notes on both models in their books and are encouraged to sketch a ‘cartoon strip’ style diagram as an extra challenge.
Students are then asked to practise two exam style questions, worth 7 marks and 2 marks respectively. The slide following these questions offers a marking scheme so students may self-assess. After a short discussion on these two questions, students are tasked with a third exam question on enzyme action. This exam style question is attached as an additional resource for students to fill in the blank spaces as a worksheet which requires students to define important terms related to enzyme action.
As a plenary task to complete the lesson and check understanding, students are asked to complete one of four sentences in their books.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a starter to encourage discussion about the differences between the induced fit and lock and key models of enzyme action. Students are also asked to explain how temperature and pH balance affect enzyme action.
The following slide briefly reviews enzyme-controlled reactions then asks students to use their mini whiteboards to write down four factors that might affect successful collision. Students can self-assess with the answers on the slide.
Students are then taught to measure enzyme-catalysed reactions; in the notes I encourage you to ask students for examples and what the measurable changes are.
Students can then use the slide to work through the ‘fill in the blank style’ paragraph using a graph as a guide to understand enzyme-catalysed reaction. On the board where everyone can see you should write - substrate - product (H202 -> h2 + 02). The following slide includes answers so students may self-assess or check their answers with a partner.
The slides then work through a few more graphs to explain the effects of temperature and pH on enzyme action. The slides are lecture style, but you can see in my mores a few suggestions for discussion questions and further lecture material. Following these slides students are encouraged to graph on their own or perhaps as a large group.
Students are then given the opportunity to answer two graph style questions in their books and then self-assess.
Next the class will watch a video about measuring the rate of reaction at fixed points of time. After the video, students should answer four questions in their books and discuss the answers as a class. The next few slides build upon these questions and students are asked to practise calculating reaction rates on their own before self-assessing.
The plenary requires students to solve seven anagrams in their books, then write an original sentence with each word.
Each task or graph from the full lesson can be found on slides 22-27.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on the plasma membrane begins with a quick discussion about the function of the cell surface membrane and the phospholipid bilayer. It also asks student to apply their knowledge to skin cells and solar radiation.
This discussion continues by asking students about the cell surface membrane and directs them to a worksheet task to identify cell membrane molecules. Students should watch a short video and make notes on this same worksheet as they listen.
To follow up on this introduction there are a few lecture slides to explain phospholipids, proteins, cholesterol, glycolipids and glycoproteins. Extra notes on each can be found below the slides.
Students will then view an animation of the fluid mosaic model as whole and label a diagram accordingly. They can self-asses to the following slide. Another video is attached to help explain why the model is called a “fluid mosaic” model which students should also summarise on their worksheet.
To synthesise their learning the students will work on a group task to build a 3D model using the “build a membrane” worksheet. When they have finished, they can practise once more through a true/false activity!
The next task is to answer the questions on the cell membrane worksheet, they may self-assess to the mark scheme on the following slide.
Not all cell membranes have the same composition, students should think>pair>share to discuss why this might be. Suggested answers are on the following slide.
The plenary task is a fun anagram challenge to reveal key terms from the lesson, as an extra challenge they can define each term as well!
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
To begin this lesson on the methods of studying cells, students will review previous lessons by discussing the nature of water and the reasons water is important to living organisms. Students should also discuss the properties of ATP and the importance of those properties.
Students will then learn some of the basics of different microscopes. The slides then explain magnification and resolving power.
To prepare students to calculate total magnification, the students will work through a review slide on units of measurement then practise some unit conversions on their mini whiteboards!
The next few slides define total magnification and explain how to make sense of the actual size of a specimen. The previous exercise on unit conversion will be helpful here! A final example is shown before students are given a task with two magnification questions to complete in their books. They can self-access to the following slide.
Students can then complete an included worksheet on magnification calculation, answers are available on the next slide for self or partner-assessment. The attached Magnification Questions sheet also includes worked answers.
To explain cell fractionation students will watch a quick video then answer a few questions. The stages of cell fractionation are then set out in detail on the following slides, extra thoughts can be found in the notes below the slides. Students can then complete a grid activity to demonstrate each stage in their books.
The plenary task is to create quiz questions to test their peers on the methods of studying cells.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
To begin this lesson on cancer, students will review their knowledge of cell processes. They should be able to describe mitosis, the prophase, and cytokinesis in detail.
For a quick recap on mitosis students will watch a short video, then use their mini whiteboards to name cell cycles and their roles based the images on the following slides!
Students will then learn to calculate miotic index (MI). The following slide features an exam-style chart for them to practice calculating MI values.
They will then learn to calculate the time a cell spends in each stage and complete example calculations by showing all of their working on their mini whiteboards. Answers for self-assessment are on the following slide.
Using their knowledge on MI and cell stage time students will begin to think about cancer. They should make note of the definitions of key words before moving on.
Students will then watch a short video on the cancer genome project and answer four questions in their books while watching. Answers are provided for self-assessment.
The cell cycle is controlled at three checkpoints, at which the cell can continue or stop production. Students should make clear note in their books before moving on to discuss how these checkpoints are relevant to cancer. The following slides define proto-oncogenes, oncogenes, and mutated tumour suppressor genes, so students should be able to explain how mutations cause cancer.
Students are then taught how cancer treatment works in the cell cycle. The following slide considers the cellular side-effects of treating cancer.
To consolidate students will practise an exam-style fill in the blank task. Answers are on the following slide for self-assessment.
The plenary task is for students to draft a WhatsApp message to a friend explaining what they have learned about cancer in this lesson.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Organisms & their Environment’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on the gas exchange processes in fish begins with a quick review of the insect exchange system and the advantage of tracheoles being filled with water.
Students are then introduced the exchange properties of fish; they should discuss as a class how fish supply respiratory gases to cells within their body tissues. They will then watch a short video and answer exam style questions based on the video.
This activity should help students be prepared for a function/feature matching activity; answers are available on the following slide for self-assessment.
The next task is to complete sentences explaining the process of gas exchange in fish and defining the features and functions of fish. Answers are on the following slide for self-assessment!
Students are then introduced to the counter-current exchange. They should take thorough notes and understand the importance of the process. A video link is available in the notes in order to help consolidate. A worksheet with the appropriate diagrams is included.
The following slide reiterates the difference between parallel and counter current flow. Points to note for an exam question are in the notes below, students will have the opportunity to answer exam style questions in the next task and answers are available for self-assessment.
This lesson features a lab task for students to dissect and observe gas exchange surfaces in a bony fish. The method is set out on the slides.
The lesson ends with a plenary, students should complete an exit card sharing 3 things they’ve learnt, 5 key words, and 1 question to test their peers.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a lesson which meets specification points within the OCR Gateway Science - B1 -Cell-Level Systems SoW.
The lesson begins with a recap on the genetic structures found within an organism, students will need to order the organisms in terms of size. Students can then self-assess their work, using the answers provided.
Next, students are taught about the structure of DNA, using detailed diagrams. Children will have a few minutes to study the structure of a DNA nucleotide, it will then be covered up and they will need to try and recreate the diagram, including key words. This task can then be self-assessed.
Students will now be shown a video, which outlines the way in which nucleotides are bound together by complimentary base-pairing. Whilst watching the video, students will need to answer a set of questions. The answers to this video are on the next slide, so students can either self-assess or peer-assess their work.
The last task is a ‘quick check’ activity, which includes some summary questions on the topic of this lesson.
All resources are included, please review with any feedback :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with an introduction to proteins, the importance of such molecules in the human body as well as the general structural formula of an amino acid.
Students are then shown the structural formula of two amino acids - glycine and alanine - and are asked to used their mini whiteboards to show how a condensation reaction could occur between the two molecules to form a peptide bond. There work can then be checked against the answer provided on the PowerPoint.
Over the course of the next few slides, you can run through the main principles of the formation of a protein from the primary -> secondary -> tertiary -> quaternary structure. As students listen to the main principles, they can write these down onto their ‘Protein Summary Sheet’ - provided.
Students will then be given a worksheet which shows an image/description of a protein as one of the four levels of protein formation, students have to identify which level it is at (primary, secondary, tertiary, quaternary). Once complete, students can self-assess their work using the answers provided on the PowerPoint.
Students will now be introduced to the Biuret test for proteins, which they will need to be able to recite as well as give details of a positve/negative result.
The last activity is a past-paper question to test students knowledge of what has been learned this lesson, which can be self-assessed using the mark scheme provided.
The plenary requires students to write a twitter message to outline what they have learned this lesson, including #keywords.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a lesson designed to meet specification points for the new OCR GCSE (Gateway) Biology 'Cell-level lsystems’ scheme of work.
The lesson begins by pupils being introduced to the term ‘photosynthesis’ and then being asked to consider the raw materials that plants need in order for photosynthesis to occur. Pupils are then given three minutes to write down everything they have learnt about photosynthesis so far, with an extension task to write the word equation for the reaction.
In the next part of the lesson pupils are introduced to the word equations and are challenged to write a balanced symbol equation for this reaction.
Mid-lesson plenary involves a set of exam-questions (total marks = 9 marks) which they can complete in silence and then peer or self-assess using the mark scheme provided.
Pupils are then introduced to the concept of endothermic and exothermic reactions, they are given the definition for an endothermic reaction and are then asked to ‘think, pair, share’ with a partner about what an exothermic reaction might be and whether photosynthesis is endothermic or exothermic. After 5 minutes, pupils are given the answers and they can mark their work.
The final activity is for pupils to think about the structure of the leaf, and how it is adapted for its function of photosynthesis. Students will watch a video about these various adaptations, and will need to answer a set of questions whilst watching. This task can then be self-assessed using the answers provided in the PowerPoint presentation.
Pupils can choose their plenary activity - either writing quiz questions on the topic of the lesson or summarising what they learnt by writing a twitter message along with #keywords.
All resources are included in the PowerPoint presentation, thank you for purchasing :)
This is a homeschool pack designed for the GCSE Biology course, specifically the ‘B1.2 Organisation’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains twelve pages of information, to meet all learning objectives within the GCSE Biology ‘Organisation’ unit of work. This is followed by seven pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
Stem Cells
Tissues & organs
The human digestive system
Human digestive enzymes
The blood
Blood vessels
The heart
Helping the heart
Breathing & gas exchange
Plants tissues & organs
Transport in plants
Evaporation & transpiration
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
This is a homeschool pack designed for the GCSE Biology course, specifically the ‘B1.3 Infection & Response’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains nine pages of information, to meet all learning objectives within the GCSE Biology ‘Infection & Response’ unit of work. This is followed by five pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
Heath & Wellness
Pathogens & Disease
Preventing Infections
Defence Mechanisms
Antibiotics & Painkillers
Vaccination
Bacterial Diseases
Viral Disease
Fungal & Protist Diseases
Cancer
Antibiotic Resistance
Drug Trials
Smoking
Alcohol
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
This is a homeschool pack designed for the GCSE Biology course, specifically the ‘B1.6 Inheritance, variation & evolution’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains nine pages of information, to meet all learning objectives within the GCSE Biology ‘Inheritance, variation & evolution’ unit of work. This is followed by five pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
Types of Reproduction
Meiosis
Gene Expression & Inheritance
DNA Structure & Protein Synthesis
Inherited Disorders
Genetic Screening
Variation
Continuous & Discontinuous Variation
Selective Breeding
Genetic Engineering
Ethics of Gene Technologies
Evolution by Natural Selection
Evidence for Evolution: Fossils
Extinction
Evolution of Antibiotic Resistant Bacteria
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.