Hero image
Chemistry teacher
Reactivity 1 / IB Chemistry / Reactivity 1.1  (Including Worksheets / Experiments)
amine_ouaketamine_ouaket

Reactivity 1 / IB Chemistry / Reactivity 1.1 (Including Worksheets / Experiments)

(0)
Reactivity 1. What drives chemical reactions? Reactivity 1.1—Measuring enthalpy changes Reactivity 1.1.1—Chemical reactions involve a transfer of energy between the system and the surroundings, while total energy is conserved. Reactivity 1.1.2—Reactions are described as endothermic or exothermic, depending on the direction of energy transfer between the system and the surroundings. Reactivity 1.1.3—The relative stability of reactants and products determines whether reactions are endothermic or exothermic. Reactivity 1.1.4—The standard enthalpy change for a chemical reaction, ΔH⦵, refers to the heat transferred at constant pressure under standard conditions and states. It can be determined from the change in temperature of a pure substance.
Using moles (IGCSE)
amine_ouaketamine_ouaket

Using moles (IGCSE)

(0)
5 - usings moles 5.1 The mole 5.2 Calculations from equations 5.3 Reactions involving gases 5.4 The concentration of a solution 5.5 Finding the empirical formula 5.6 From empirical to final formula 5.7 Finding % yield and % purity
Structure 2 / IB Chemistry / Structure 2.3 and 2.4 (lesson / Worksheets)
amine_ouaketamine_ouaket

Structure 2 / IB Chemistry / Structure 2.3 and 2.4 (lesson / Worksheets)

(0)
Structure 2.3 : The metallic model Structure 2.3.1 : A metallic bond is the electrostatic attraction between a lattice of cations and delocalized electrons. Structure 2.3.2 : The strength of a metallic bond depends on the charge of the ions and the radius of the metal ion. Structure 2.3.3 : Transition elements have delocalized d-electrons. Structure 2.4 : From models to materials Structure 2.4.1 : Bonding is best described as a continuum between the ionic, covalent and metallic models, and can be represented by a bonding triangle. Structure 2.4.2 : The position of a compound in the bonding triangle is determined by the relative contributions of the three bonding types to the overall bond. Structure 2.4.3 : Alloys are mixtures of a metal and other metals or non-metals. They have enhanced properties. Structure 2.4.4 : Polymers are large molecules, or macromolecules, made from repeating subunits called monomers. Structure 2.4.5 : Addition polymers form by the breaking of a double bond in each monomer.Structure 2.4.6 : Condensation polymers form by the reaction between functional groups in each monomer with the release of a small molecule.
Structure 3 / IB Chemistry / Structure 3.1 and 3.2 (lesson / Worksheets)
amine_ouaketamine_ouaket

Structure 3 / IB Chemistry / Structure 3.1 and 3.2 (lesson / Worksheets)

(0)
Structure 3.1—The periodic table: Classification of elements Structure 3.1.1—The periodic table consists of periods, groups and blocks. Structure 3.1.2—The period number shows the outer energy level that is occupied by electrons. Elements in a group have a common number of valence electrons. Structure 3.1.3—Periodicity refers to trends in properties of elements across a period and down a group. Structure 3.1.4—Trends in properties of elements down a group include the increasing metallic character of group 1 elements and decreasing non-metallic character of group 17 elements. Structure 3.1.5—Metallic and non-metallic properties show a continuum. This includes the trend from basic metal oxides through amphoteric to acidic non-metal oxides. Structure 3.1.6—The oxidation state is a number assigned to an atom to show the number of electrons transferred in forming a bond. It is the charge that atom would have if the compound were composed of ions. Structure 3.2—Functional groups: Classification of organic compounds Structure 3.2.1—Organic compounds can be represented by different types of formulas. These include empirical, molecular, structural (full and condensed), stereochemical and skeletal. Structure 3.2.2—Functional groups give characteristic physical and chemical properties to a compound. Organic compounds are divided into classes according to the functional groups present in their molecules. Structure 3.2.3—A homologous series is a family of compounds in which successive members differ by a common structural unit, typically CH2. Each homologous series can be described by a general formula. Structure 3.2.4—Successive members of a homologous series show a trend in physical properties. Structure 3.2.5—“IUPAC nomenclature” refers to a set of rules used by the International Union of Pure and Applied Chemistry to apply systematic names to organic and inorganic compounds. Structure 3.2.6—Structural isomers are molecules that have the same molecular formula but different connectivities.
All the worksheets for IB chemistry topic 1 to 11
amine_ouaketamine_ouaket

All the worksheets for IB chemistry topic 1 to 11

(0)
All the worksheets for IB chemistry topic 1 to 11 1 - Stoichiometrics 2 & 12 - Atomic Structure 3 & 13 - Periodicity 4 & 14 - Bonding & Structure 5 & 15 - Energetics 6 & 16 - Kinetics 7 & 17 - Equilibrium 8 & 18 - Acids & Bases 9 & 19 - Redox Processes 10 & 20 - Organics 11 & 21 - Measurements & Data