Predominately a Chemistry teacher, although I dabble with Biology and Physics too. Most of my schemes of work were planned for either AQA or iGCSE schemes of work at KS4 and the IB at KS5 (although I have no official affiliation with the IB)
Predominately a Chemistry teacher, although I dabble with Biology and Physics too. Most of my schemes of work were planned for either AQA or iGCSE schemes of work at KS4 and the IB at KS5 (although I have no official affiliation with the IB)
This unit was planned as part of the Chemistry IB Option B - Biochemistry scheme of work, and covers all the topics at SL. It would also be suitable for other schemes of work.
It includes 6 full PowerPoints, along with student versions to use as notes, which have spaces for the students to add in missing information and activities for them to complete.
It also includes exam questions for practice or assessment purposes
Topics covered are:
Introduction to Biochemistry
- Metabolism
- Biochemical reactions in terms of oxidation and reduction
- Respiration
- Photosynthesis
- Hydrolysis and Condensation reactions
Proteins
- 2 amino acids and their behaviour as zwitterions
- Gel electrophoresis
- Paper chromatography
- Peptides
- Hydrolysis of peptides
- Proteins - primary, secondary, tertiary and quaternary structures
- Acid-base properties of amino acids and proteins
- Acid-base buffers
- Enzymes
- Induced fit theory
- Non competitive and competitive inhibition
- The Michaelis-Menten equation
- Protein Assays
Lipids
- Fatty acids
- Triglycerides
- Calculating the iodine number
- Hydrolysis of triglycerides
- Rancidity of fats
- Energy values of fats
- Phospholipids
- Steroids (including cholesterol)
- Sex hormones
- Anabolic steroids
Carbohydrates
- Monosaccharides
- Reducing sugars
- Disaccharides
- Polysaccharides
- Starch, glycogen and cellulose
Vitamins
- Preventing deficiencies
- Water and fat solubilities of vitamins
- Vitamin A
- Vitamin C
- Vitamin D
- Decomposition of vitamins
Environmental Impacts of Biochemistry
- Xenobiotics
- Metabolism of xenobiotics
- DDT
- PCBs
- Heavy metal toxicity
- Pharmaceutically active compounds and detergents
- Host-guest complexes
- Polymers
- Green Chemistry
his PowerPoint was planned as part of the IB scheme of work on Medicinal Chemistry, and covers the necessary content for the D.6 section. It would also be suitable for other post-16 courses.
Included are the fully completed PowerPoint and a student version of the PowerPoint with sections to complete independently.
Topics covered include:
- Effects of PACs on the environment
- Antibiotic Resistance
- Nuclear Waste (both LLW and HLW)
- Chlorinated solvent waste
- Supercritical fluid waste
- Green Chemistry
- Biotechnologies in Green Chemistry
This PowerPoint was planned as part of the IB scheme of work on Medicinal Chemistry, and covers the necessary content for the D.5 section. It would also be suitable for other post-16 courses.
Included are the fully completed PowerPoint, a student version of the PowerPoint with sections to complete independently and some exam style questions, with markschemes.
Topics covered include:
- The differences between viruses and bacteria
- The structure of viruses
- How viruses reproduce and replicate
- How viruses are treated by interrupted stages of the replication process
- Oseltamivir and Zanamivir - structure and action
- HIV and AIDS
- Treatment of HIV and AIDS
This PowerPoint was planned as part of the IB scheme of work on Medicinal Chemistry, and covers the necessary content for the D.4 section. It would also be suitable for other post-16 courses.
Included are the fully completed PowerPoint, a student version of the PowerPoint with sections to complete independently and some exam style questions, with markschemes.
Topics covered include:
- The need for stomach acid
- pH calculations to determine the concentration of acid in the stomach
- Antacids: equations for their reactions with stomach acid; side effects; calculation of quantity of acid neutralised
- Regulation of acid production using both H2-histamine receptor blockers (Zantac) and proton pump inhibitors (Omeprazole and Esomeprazole)
- Acid-base buffers: definition and calculations
- Hydrogencarbonate and carbonate buffers
This PowerPoint was planned as part of the IB scheme of work on Medicinal Chemistry, and covers the necessary content for the D.3 section. It would also be suitable for other post-16 courses.
Included are the fully completed PowerPoint, a student version of the PowerPoint with sections to complete independently and some exam style questions, with markschemes.
Topics covered include:
- Morphine: Structure and action; side effects; withdrawal
- How opiates cross the blood-brain barrier
- Diamorphine
This PowerPoint was planned as part of the IB scheme of work on Medicinal Chemistry, and covers the necessary content for the D.2 section. It would also be suitable for other post-16 courses.
Included are the fully completed PowerPoint, a student version of the PowerPoint with sections to complete independently and some exam style questions, with markschemes.
Topics covered include:
- History of Aspirin
- Method of Producing Aspirin
- Calculating the % Yield of Aspirin produced from Salicyclic Acid
- Effects of Aspirin
- Soluble Aspirin
- Development of Penicillin
- Structure of Penicllin
- How Penicillin Works
- Antibiotic Resistance
This PowerPoint was planned as part of the IB scheme of work on Medicinal Chemistry, and covers the necessary content for the D.1 section. It would also be suitable for other post-16 courses.
Included are the fully completed PowerPoint, a student version of the PowerPoint with sections to complete independently and some exam style questions, with markschemes.
Topics covered include:
- Routes of drug administration
- Theraputic Effects of Drugs
- The Placebo Effect
- Side Effects
- Calculation of the Therapeutic Index
- The Therapeutic Window
- Bioavailability
- Tolerance and Addiction
- Drug Action
- Drug Development by both Drug Design and Drug Discovery
10 homework projects on key stage 3 and 4 Chemistry, linked to the Exploring Science and iGCSE schemes of work.
All homework projects are fully differentiated, with level ladders provided to maximise pupil progress
7E - Acids and Alkalis
7F - Chemical reactions
7H - Solutions
8E - Classifying Elements
9E - Metals and their reactions
9G - Environmental Chemistry
Extracting Copper
Oil
Nanoparticles and Smart Materials
Analysing Substances
27 homework projects on key stage 3 and keystage 4 science, linked to the Exploring Science and GCSE schemes of work.
All come with fully differentiated level ladders to allow for maximum pupil progress
A bargain at less than a pound a project!
Key Stage 3
7A - Cells
7B - Reproduction
7C - Adaptations
7E - Acids and Alkalis
7F - Chemical reactions
7H - Solutions
7I - Energy Resources
7J - Electricity in the Home
8A - Food and Digestion
8C - Microbes and Disease
8E - Classifying Elements
8I - Heating and Cooling
9B - Health and Fitness
9C - Plants
9E - Metals and their reactions
9G - Environmental Chemistry
9L - Pressure
Recycling
Key Stage 4
Genetics
Hydroponics
Extracting Copper
Nanoparticles and Smart Materials
Oil
Analysing Substances
Forces and Momentum
Waves and Communication
Energy and Payback Time
These 16 PowerPoints were planned as part of the IB scheme of work on Acids and Bases, Redox Chemistry and Organic Chemistry, and cover the necessary content for both the Standard and Higher Level topics. They would also be suitable for other post-16 courses.
Included are fully completed PowerPoints, student versions of the PowerPoints with sections to complete independently and some exam style questions.
Topics included are:
- What are acids and bases?
- Bronsted Lowry acids and bases (and conjugate acids and bases)
- Amphiprotic and amphoteric substances
- Lewis acids and bases
- Reactions of acids with metals, metal oxides, metal hydroxides, metal carbonates and metal hydrogencarbonates, bases and alkalis
- Making salts
- What is pH and how to calculate the pH of both acids and bases
- Using the dissociation constant of water to calculate pH
- Acid deposition - how it occurs and how it can be treated
- Calculations involving Ka, pKa, Kb, pKb, pH and pOH
- Using the relationships Kw = Ka x Kb and pKa + pKb = pKw
- Titration curves for titrations involving any combination of strong and weak acids and bases
- Indicators - how to select a suitable indicator for a titration
- How to calculate the pH of salt solutions
- Buffers - what are they, how are they made and how do they work (including calculations)
Reduction and Oxidation
Oxidation states and how to determine them
Naming compounds using oxidation states
Oxidising and reducing agents
Half equations in molten substances
Half equations in acidic solutions
The activity series
Redox titrations
Winkler method to determine biochemical oxygen demand
Voltaic Cells
Electrolytic Cells
Cell potentials
The standard hydrogen electrode
Ecell and spontaneity
Working out cell potentials
Polarity and direction of electron flow
The electrochemical series
Electrolysis of aqueous solutions
The effect of the nature of electrodes on the products
Electroplating
Electrolysis of water
Quantitative electrolysis
- Different kinds of formula e.g. molecular, empirical
- Alkanes
- Alkenes
- Compounds involving a benzene ring
- Homologous Series
- IUPAC nomenclature
- Naming halogenoalkanes
- Naming alcohols, ethers, aldehydes, ketones and carboxylic acids
- Esters
- Primary, secondary and tertiary alcohols, halogenoalkanes and amines
- Structural Isomerism
- Functional Group Isomerism
- Benzene and Aromatic Compounds
- Combustion of alkanes
- Reaction of alkanes with halogens
- Reactions of alkenes
- Addition polymerisation
- Oxidation of alcohols
- Nucleophilic Substitution mechanisms of primary, tertiary and secondary halogenoalkanes
- Factors affecting the rate of nucleophilic substitution
- Electrophilic Addition mechanisms
- Markovnikov´s Rule
- Electrophilic subtitution mechanisms
- Reduction Reactions
- Reaction pathways and synthetic routes
- Cis-trans isomerism
- Conformational isomerism
- Optical isomerism
- Optical Isomers and Plane-polarised light
- Racemic mixtures
- Diastereoisomers
These schemes of work were planned as part of the iGCSE course, but could be used for other courses. They include PowerPoints, activities, experiments, homework and formative assessment resources.
The topics covered are:
- Elements, compounds and mixtures
- Atomic Structure
- Isotopes
- Ionic and Covalent Bonding
- Conservation of Mass and Balancing Equations
- Giant Ionic structures
- Giant Covalent structures
- Simple Covalent structures
- Metallic structures
- Testing for Ions
Scheme of work for KS4 energetics (planned for IGCSE but could be used for other exam boards).
Includes PowerPoints, a practical, worksheets with answers and some past paper questions.
Covers:
Endothermic and Exothermic reactions
Use of Q=mcT for calculation of energy released by a fuel
Calorimetry
Calculation of energy changes using bond enthalpy data
What makes a good fuel?
Hydrogen, ethanol and nuclear fuels
Scheme of work planned for KS4 redox (originally for the IGCSE scheme of work). Includes a practical on oxidising and reducing agents, a full PowerPoint (41 slides) and a starter activity.
Students will learn:
How to define oxidation and reduction in terms of hydrogen, oxygen and electrons
Practicing writing half equations
How to assign oxidation states to transition metal ions
How to identify what has been oxidised and what has been reduced
Common oxidising and reducing agents - how these work and the colour changes involved
Scheme of work planned for the IGCSE scheme on equilibria, but would be suitable for other exam boards too.
PowerPoints cover:
Equilibria and how they can be altered
Properties, reactions and uses of Hydrogen, Nitrogen and Ammonia
The Haber Process
Properties, reactions and uses of Sulphur, Sulphur Dioxide and Sulphuric Acid
The Contact Process
Also included are a practical activity and a computer research task (could be a homework)
Two lessons designed to cover the topics of stability of compounds (carbonates, nitrates and hydroxides) and the limecycle for the iGCSE, but could also be used for other exam boards.
Includes PowerPoints, two practical activities and a computer research task
Scheme of work designed for year 9 (starting the GCSE course early) on making salts. However it could also be used for a low-mid ability year 10/11 group
This resource includes:
- A full scheme of work, with objectives, practical activities etc.
- Presentations for the 6 lessons
- Worksheets
- Some exam style questions that could be used as an end of topic test, or as practice questions.
Lesson Titles:
- Recapping acids and alkalis
- Making soluble salts - metals and acids
- Making soluble salts - bases and acids
- Making soluble salts - metal carbonates and acids
- Making soluble salts - alkalis and acids
- Making insoluble salts
Unit of work on structure and bonding focusing on the four different types of bonding - ionic, covalent (simple and giant) and metallic.
The Unit includes a PowerPoint and a booklet. The booklet provides spaces for the students to fill in answers as they go through the PowerPoint and also includes an exam question summary of each type of bonding. The answers to the questions are also included.
Could be used for students to learn the topic independently in a flipped classroom setting, or in class with a lower ability group.
A PowerPoint covering all the topics covering in Organic Chemistry for the iGCSE Coordinated Science course. The accompanying booklet has gaps and questions for the students to fill in as they go through the PowerPoint.
This was designed for a low ability group with weaker writing skills in order to move through the content more quickly. It includes the topics of:
Crude Oil
Fractional Distillation
Structure of alkanes, alkenes and alcohols
Properties and reactions of alkanes
Cracking of alkanes
Saturated vs. Unsaturated Compounds
Addition reactions of alkenes
Reactions and uses of alcohols
Macromolecules
Synthetic plastics
Addition and condensation polymers
Natural Macromolecules
A series of nine homework projects suitable for KS4 students covering Biology, Chemistry and Physics topics.
- Genetics
- Hydroponics
- Extracting Copper
- Oil
- Analysing Substances
- Nanoparticles and Smart Materials
- Waves and Communication
- Energy and Payback Time
- Forces and Momentum
4 homework projects suitable for KS4 Chemistry students on Extracting Copper, Oil, Nanoparticles and Smart Materials and Analysing Substances.
Each project comes with a level ladder style success grid, graded A*-D, for students to maximise their learning.