A 32 page workbook consisting of 32 worksheets. It was originally designed as a revision activity for my Year 11 GCSE Electronic Products students. It can also be used as a classroom resource.
Advantages and disadvantages of different power sources
Battery types
Input and output devices
Switch types
Calculating resistor values
Resistor labeling conventions
Resistor preferred values (E12)
Resistor preferred values (E24)
Potential dividers
Potential divider calculations x2
Potential dividers with LDRs and thermistors
LED limiting resistor calculation x2
Comparators
Capacitor types
Calculating RC time constants
555 Astable circuit
555 Astable calculations x2
555 Monostable circuit
555 Monostable calculations
Diodes
Thyristors
NPN Transistors
Darlington transistors
Signal types (analogue & digital waveforms)
Buffers and NOT gates
AND gates and OR gates
NAND gates and NOR gates
XOR gates and combined logic gates
A complete design and make project based on the design and construction of a torch using QTC pills as switches, two LEDS and a thyristor. The design and building of the project is divided into eight stages which can form the basis of individual sessions. The project includes the following detailed powerpoints:
Introduction - 10 pages setting out the design brief and providing detailed 3D renderings of an examplar product
Prototyping - 6 pages explaining the importance of prototyping
Making the case - 11 pages demonstrating how a 2D package and laser cutter are used to produce torch body by laminating acrylic
QTC Circuit: 13 pages describing how QTC works and how it is applied to the project
Building the circuit - 2 pages showing PCB layout, component list and PCB design which can be used to manufacture the PCB
Making the battery holder - 5 pages showing how copper strip is moulded to form a battery holder
Laminating: 5 pages briefly setting out how acrylic can be laminated to make 3D models
Finishing Techniques - 11 pages showing how files, wet and dry and buffing machines are used
This resource is based on the construction of training board using the guide provided. A ten page workbook guides students through practical activities to investigate the function of various commands.
A PCB design and construction design sheet is provided to allow the manufacture of the training board by students or technician. The project is based on a PICAXE 18 microcontroller. A PCB design is provided but for a copy of the PCB layout in CWZ format please contact: ed@clarvis.co.uk (TES does not allow the attachment of these files), with a bonus 8pin and 18pin PICAXE download PCB.
The training board consists of:
4 coloured LEDs connected to outputs
A piezo sounder
Two push switches connected to digital inputs
A reset switch
An LDR connected to analogue input
A thermistor input connected to analogue input
A potentiometer connected to analogue input
The course workbook covers the following learning objectives:
Part 1: Introduction
Know what PIC stands for
Know the advantages of a PIC over a conventional circuit
Know how PICs can be programmed
Part 2: Transducers and signal types
Know the difference between an input transducer and an output transducer
Know the difference between a digital and analogue signal
Know which transducers use analogue signals
Know which transducers use digital signals
Part 3: Turning things on and off
Know how to use the HIGH command Know how to use the LOW command Know how to use the TOGGLE command Know how to use the WAIT command Know how to use the PAUSE command
Part 4: Using the PINs command
Know the advantage of the PINS command Know how to use the PINS command
Part 5: Making decisions
Know how to use the IF command
Part 6: Subroutines
Know the advantages of using subroutines
Know how to write a program using subroutines
Know how to use the GOSUB command
An introductory workbook scheme for Year 7 students who are new to Food Technology. The workbook guides students through the fundamentals of health, hygiene, safety, use of equipment, nutrition, sensory testing and design of a product. Included are recipes for lemonade, fruit salad and coleslaw which allow students to explore a range of equipment and ingredients. A design task involves students planning, making and evaluating a pasta salad.
Page 1&2: Targets & Assessments - (Pages for students and teachers to assess learning and set targets)
Page 3: Hygiene and Safety Rules of the Food Technology Area
Page 4: Safety Rules for A Safe Kitchen - (worksheet)
Page 5: Food Hygiene - (worksheet)
Page 6&7: Washing & tidying up (worksheet)
Page 8: Kitchen Equipment (worksheet)
Page 9: Health and Safety rules
Page 10&11: Cookers and Hobs (worksheets)
Page 12: Lemonade
Page 13: Health plate
Page 14: Health plate (worksheet)
Page 15&16: Healthy Eating (worksheets)
Page 17: Vitamins and Minerals worksheet
Page 18: Recipe for fruit salad
Page 19&20: Nutrition test
Page 21-23: Food sensory testing (worksheets)
Page 24: Coleslaw recipe
Page 25: Sensory testing of coleslaw made by two different methods (worksheet)
Page 26: Designing an pasta salad (worksheet)
Page 27: Pasta salad design specification (worksheet)
Page 28: Pasta salad ideas (sketch page)
Page 29: Pasta salad design (sketch page)
Page 30: Planning the salad (flowchart worksheet)
Page 31: Pasta salad evaluation (worksheet)
Page 32: Packaging design (sketch page)
Page 33: Sensory evaluation of pasta salad (worksheet)
Page 34: Personal evaluation of the course (worksheet)