The resources included here are designed to be stimulating, challenging and adequately differentiated. Time is precious to a teacher, and these 'oven ready lessons' include everything you need at a cost effective price. The resources included are perfect for subject specialists and non-specialists alike, and are produced through a modern/professional use of PowerPoint which utilises graphics, animation and timers (etc.) to promote maximum progress during lessons.
The resources included here are designed to be stimulating, challenging and adequately differentiated. Time is precious to a teacher, and these 'oven ready lessons' include everything you need at a cost effective price. The resources included are perfect for subject specialists and non-specialists alike, and are produced through a modern/professional use of PowerPoint which utilises graphics, animation and timers (etc.) to promote maximum progress during lessons.
This lesson examines the interaction between genotype and environment in determining the phenotype of agricultural animals. Through discussions and practical examples, students explore how genetic potential and environmental factors like nutrition, climate, and management practices shape observable traits. This lesson provides foundational knowledge for understanding animal breeding and environmental management in agriculture.
Learning Objectives:
Define genotype, environmental influence, and phenotype.
Explain how environmental factors alter phenotype.
Link genotype and environment to the final phenotype of an animal.
Discuss how producers can manage environmental factors to enhance desired traits.
Lesson Highlights:
Starter Activity: Students define genotype and phenotype, discuss examples, and consider how these concepts apply to agriculture.
Key Concepts Breakdown: Explanation of genotype, phenotype, and environmental influences, with a focus on their relevance in agricultural settings.
Effect of Environment on Phenotype: Exploration of how factors like nutrition, temperature, and housing impact productivity, even in animals with desirable genetic traits.
Practical Agricultural Examples: Case studies, such as high milk production in well-fed dairy cows or high-quality wool in Merino sheep under optimal conditions.
Complete Answers and Timed Activities: All answers are included to guide discussion, with timers for efficient lesson pacing.
Included Materials:
PowerPoint Presentation with diagrams and examples of genotype-environment interaction
Worksheet for analyzing phenotype variations under different environmental conditions
Answer key for all activities and case studies
Reflection prompts for student self-assessment
This lesson package equips students with an understanding of genotype and environmental interactions, helping them apply this knowledge to improve productivity and animal welfare in agricultural practices.
This lesson guides students through the process of selecting agricultural products, such as mango varieties, based on phenotypic traits and market preferences. Through data analysis, students evaluate factors like sweetness, fibre content, size, and yield, and create visual representations to identify the most marketable varieties. This lesson is ideal for teaching students how data and consumer preferences inform agricultural product selection.
Learning Objectives:
Evaluate phenotypic traits of agricultural products.
Correlate phenotypic traits with consumer market preferences.
Visualize data using graphs and charts to compare product traits.
Draw conclusions on product suitability for the market based on analysis.
Lesson Highlights:
Starter Activity: Students brainstorm desirable phenotypic traits in mangoes and discuss which traits are important to consumers and farmers.
Trait Analysis Exercise: Exploration of key phenotypic traits, such as sweetness, fibre content, and size, and their relevance to market demands.
Data Visualization Task: Students create graphs (bar charts, pie charts) to compare mango varieties, analyzing which varieties best align with consumer preferences.
Market Suitability Evaluation: Students assess which varieties are most suitable for the market, supported by data on yield, size, and phenotypic traits.
Complete Answers and Timed Activities: Answers are provided for guiding discussion, and timers ensure structured pacing for each activity.
Included Materials:
PowerPoint Presentation with phenotypic trait data and consumer preference guidelines
Data set and worksheet for trait analysis and product comparison
Answer key for all analysis questions and activities
Reflection prompts for student self-assessment
This lesson package teaches students how to use data to inform agricultural decisions, focusing on the role of phenotypic traits in meeting market demands and enhancing product appeal.
This lesson introduces students to the levels of organization in plants, from cells to organ systems, and covers the functions of essential organelles in plant cells. Through structured activities and applied examples, students learn how cell structures contribute to the overall function of plant tissues, organs, and systems, with a focus on agricultural applications like sugarcane production. This lesson is ideal for building foundational knowledge in plant biology and its relevance to agriculture.
Learning Objectives:
Describe the structure and function of plant cells, tissues, organs, and organ systems.
Identify and classify different plant organs and their roles.
State the functions of key organelles within plant cells.
Apply knowledge of plant organization to real-world agricultural practices.
Lesson Highlights:
Starter Activity: Students explore different levels of organization in plants and identify key examples, such as roots and leaves.
Plant Cell Organelles Overview: Detailed explanation of the nucleus, mitochondria, chloroplasts, cell wall, and other key organelles, along with their roles in cell function.
Levels of Organisation in Plants: Examination of cells, tissues, organs, and organ systems, with examples like dermal, vascular, and ground tissues.
Application to Agriculture: Students connect plant organization to sugarcane growth, discussing how healthy plant structures impact yield and crop success.
Complete Answers and Timed Activities: All answers are included for teacher guidance, with timers for smooth pacing of activities.
Included Materials:
PowerPoint Presentation with visuals of cell structures and levels of organization
Worksheet for identifying and explaining the function of plant organelles and structures
Answer key for all activities and discussion points
Reflection prompts for student self-assessment
This lesson package provides students with an understanding of plant cell biology and organizational levels, helping them connect biological concepts to agricultural applications.
This lesson introduces students to the main categories of horticultural products, with a focus on those cultivated in North Queensland. Through discussions and examples, students learn about grasses, legumes, fibre crops, fruits, nuts, vegetables, and ornamentals, and explore how local climate and soil conditions support these diverse agricultural products. This lesson provides insights into regional horticulture and its economic and ecological relevance.
Learning Objectives:
Define what a horticultural product is.
Describe the main categories of horticultural products.
Detail specific examples of horticultural products grown in North Queensland.
Link examples of horticultural products to the region’s climate and soil conditions.
Lesson Highlights:
Starter Activity: Students brainstorm categories of horticultural products and guess examples commonly grown in North Queensland.
Introduction to Horticulture: Overview of horticulture’s role in agriculture, focusing on food, medicinal, and ornamental plant production.
Category Breakdown: Detailed exploration of each product category, with specific examples like sugarcane (grasses), soybeans (legumes), cotton (fibre), mangoes (fruit), macadamias (nuts), tomatoes (vegetables), and orchids (ornamentals).
Environmental Relevance: Students discuss how North Queensland’s climate and soil types support specific crops and why these factors are vital for crop selection and productivity.
Complete Answers and Timed Activities: All answers are provided for easy reference, with timers to maintain lesson pacing.
Included Materials:
PowerPoint Presentation with visual examples of each horticultural product category
Worksheet for identifying and categorizing products, with a focus on North Queensland
Answer key for all activities and discussion points
Reflection prompts to encourage student assessment of their understanding
This lesson package provides students with foundational knowledge of horticultural diversity and the environmental factors that support successful crop production in North Queensland.
This lesson introduces students to the classification of agricultural plants, focusing on the concepts of species, variety, and cultivar. Through discussions and classification activities, students learn how these classifications aid in crop selection, pest management, and agricultural planning. This lesson is ideal for building foundational knowledge in plant biology and understanding the practical applications of crop classification in agriculture.
Learning Objectives:
Define plant species, variety, and cultivar.
Describe the differences between naturally occurring varieties and selectively bred cultivars.
Classify a range of crops using a plant family classification key.
Discuss the importance of plant classification in agriculture.
Lesson Highlights:
Starter Activity: Students explore the concept of scientific classification and discuss the importance of binomial naming, with examples like wheat (Triticum aestivum).
Concept Breakdown: Definitions and examples of species, variety, and cultivar, highlighting their importance in agricultural contexts.
Classification Key Activity: Students use a plant classification key to identify the families of various agricultural crops, practicing classification skills and understanding plant groupings.
Practical Application: Discussion on how crop classification supports pest management, crop rotation, and meeting market standards.
Complete Answers and Timed Activities: All answers are included for ease of facilitation, with timers for structured lesson pacing.
Included Materials:
PowerPoint Presentation with examples of species, varieties, and cultivars
Worksheet for practicing crop classification using a key
Answer key for all activities and classification tasks
Reflection prompts for student self-assessment
This lesson package provides students with essential knowledge of agricultural plant classification, helping them understand how structured plant taxonomy aids in effective crop management and agricultural decision-making.
A full differentiated lesson with everything you need. Lesson is tailored to activate SOW and pitched to a year 8 group. Powerpoint animations and timers support Q/A during peer mediated correction and promote pace throughout the lesson. Differentiated question grid included alongside stretch activities targeted towards more able.
This detailed lesson introduces students to the importance of essential nutrients for plant health and growth. Through interactive activities and real-world examples, students learn to identify the symptoms of nitrogen, phosphorus, and potassium deficiencies and explore effective strategies to prevent and correct these issues in agriculture. Ideal for fostering a deeper understanding of plant nutrition and sustainable agricultural practices.
Learning Objectives:
Identify the roles of nitrogen (N), phosphorus §, and potassium (K) in plant growth and health.
Describe the visual symptoms of deficiencies in nitrogen, phosphorus, and potassium.
Differentiate between the symptoms of each deficiency based on visual cues.
Explain the causes of nutrient deficiencies and recommend strategies to correct them in crop management.
Lesson Highlights:
Starter Activity: Students observe and identify deficiency symptoms (yellowing, purpling, browning) in plants and discuss potential nutrient causes.
Class Discussion: Review of the roles of N, P, and K in plants, focusing on how these nutrients support specific aspects of growth, such as leaves, roots, and resistance.
Deficiency Case Studies: Students analyze specific cases of nutrient deficiencies and discuss practical methods for soil improvement, such as crop rotation, fertilization, and pH management.
Complete Answers and Timed Activities: All correct answers are included for easy facilitation, and timers are integrated to keep activities well-paced and engaging.
Included Materials:
PowerPoint Presentation with nutrient role visuals and deficiency images
Worksheet for identifying and addressing nutrient deficiencies
Answer key for activities and discussions
Reflection prompts to encourage student self-assessment
This engaging lesson package provides students with practical skills to identify and manage nutrient deficiencies in plants, fostering responsible and sustainable approaches to agriculture.
This lesson introduces students to the key components of agricultural systems, including inputs, processes, outputs, and subsystems, as well as the distinctions between intensive and extensive farming methods. Using examples, interactive discussions, and case studies, students learn how these elements work together to produce agricultural outputs efficiently. Perfect for providing students with a clear and structured understanding of the complexity and interconnectedness of agricultural systems.
Learning Objectives:
Describe the components of an agricultural system.
Explain the interconnections between system components in agriculture.
State the features of intensive animal and plant industries.
State the features of extensive animal and plant industries.
Lesson Highlights:
Starter Activity: Students analyze examples from the digestive system of ruminants to understand systems’ components and connect this to agricultural systems.
Detailed Component Breakdown: Exploration of agricultural inputs, outputs, processes, subsystems, and interactions.
Case Study Analysis: Students watch a video on agricultural practices, identifying and categorizing components (inputs, outputs, subsystems, etc.).
Intensive vs. Extensive Farming: Comparative analysis of intensive and extensive farming practices, emphasizing differences in scale, resources, and productivity.
Complete Answers and Timed Activities: All correct answers are included for easy reference, with timers integrated for efficient lesson pacing.
Included Materials:
PowerPoint Presentation with examples of agricultural system components
Worksheet for case study analysis and farming comparisons
Answer key for all activities and questions
Reflection prompts to encourage student assessment of their understanding
This lesson package provides a thorough look at the components and functioning of agricultural systems, equipping students with foundational knowledge for further studies in agricultural science.
This comprehensive lesson introduces students to the concept of agricultural systems, focusing on open, closed, and isolated systems and how they interact with their surroundings. Through discussions, interactive activities, and real-world examples, students explore how inputs, processes, and subsystems produce outputs in agriculture. This lesson provides a well-rounded understanding of agricultural systems and their complexities, perfect for building foundational knowledge in agricultural science.
Learning Objectives:
Define open, closed, and isolated agricultural systems.
Differentiate between these systems in terms of energy and matter transfer.
Explain how agricultural systems function through inputs, processes, and outputs.
Illustrate agricultural system concepts using a dairy farm example.
Lesson Highlights:
Starter Activity: Students discuss energy and matter transfer in different systems, introducing open, closed, and isolated systems in agriculture.
Class Discussion: Examination of traditional farms as open systems, terrariums as closed systems, and the concept of isolated systems.
Dairy Farm Case Study: Students analyze a dairy farm as a system, identifying inputs, outputs, boundaries, subsystems, and processes through a flow diagram.
Complete Answers and Timed Activities: All answers are provided for teacher facilitation, with timers to help pace activities.
Included Materials:
PowerPoint Presentation with system definitions and agricultural examples
Worksheet for dairy farm system analysis and flow diagram creation
Answer key for discussion questions and system descriptions
Reflection prompts for student self-assessment
This lesson package offers students a clear and structured introduction to agricultural systems, helping them understand the interrelated components that drive agricultural production.
This informative lesson explores the various business structures within the agricultural industry, including family farms, partnerships, companies, and land tenure. Through discussions, data analysis, and case studies, students learn about the benefits and challenges of each structure, as well as the importance of succession planning in farming. This lesson provides valuable insights into the organizational aspects of agricultural enterprises, ideal for helping students understand property management and business continuity in agriculture.
Learning Objectives:
Describe business structures in agriculture, including partnerships, companies, land tenure, family farms, and succession.
Compare the features, advantages, and challenges of different agricultural business structures.
Analyze data from the Australian Bureau of Statistics (ABS) to understand the impact of various industries.
Interpret data on physical and biological resources, such as soil, climate, vegetation, and topography, relevant to a production unit.
Lesson Highlights:
Starter Activity: Students discuss different types of agricultural business structures, such as family farms and partnerships, and consider the importance of succession planning.
Business Structure Breakdown: Examination of each business type with a focus on ownership, responsibilities, benefits, and challenges.
Data Analysis with ABS Resources: Students analyze industry data from the ABS to compare major and minor agricultural industries, examining factors like land use and economic impact.
Resource Interpretation Exercise: Interpretation of physical and biological resource data, including soil quality, climate conditions, and topography, for informed decision-making.
Complete Answers and Timed Activities: All answers are provided for easy facilitation, with timers to maintain lesson pace and engagement.
Included Materials:
PowerPoint Presentation with examples and explanations of business structures
Data analysis worksheet using ABS and DEF resources
Answer key for all activities and discussion questions
Reflection prompts for student self-assessment
This lesson package offers students a comprehensive look at agricultural business structures, equipping them with knowledge about property ownership, industry data analysis, and resource management in agriculture.
This lesson introduces students to prominent agricultural enterprises in Queensland, including both plant- and animal-based industries. Through case studies and research activities, students examine the resources (physical, human, and biological) required for successful agricultural operations. This lesson provides valuable insights into the significance of local and national enterprises in the agricultural sector, ideal for connecting students with real-world examples of regional production.
Learning Objectives:
State examples of significant agricultural enterprises in Queensland.
Describe local and national agricultural enterprises and their importance.
Outline the physical, human, and biological resources involved in agricultural enterprises.
Compare the resources required for plant-based and animal-based enterprises.
Lesson Highlights:
Starter Activity: Students discuss well-known agricultural products from Queensland and share any personal connections to agricultural enterprises.
Case Study on Teys Australia: Exploration of one of Australia’s largest beef processing companies, covering its employment impact, export significance, and sustainability initiatives.
Resource Analysis: Students examine the physical, human, and biological resources necessary for agricultural enterprises, using examples like farmland, skilled labor, and livestock.
Research Task: Students research and compare one plant-based and one animal-based enterprise, focusing on local and national examples.
Complete Answers and Timed Activities: Answers are provided for structured discussions, and timers ensure each activity progresses smoothly.
Included Materials:
PowerPoint Presentation with case studies and resource breakdowns
Worksheet for resource analysis and enterprise comparisons
Answer key for guided discussions and case study details
Reflection prompts for self-assessment
This lesson package helps students understand the economic and environmental significance of agricultural enterprises, offering a comprehensive look at the resources and sustainability practices that support these industries.
This lesson introduces students to the physical characteristics of agricultural animals, with a specific focus on comparing Bos taurus indicus (Zebu cattle) and Bos taurus taurus (European cattle). Through discussions, examples, and comparative analysis, students learn how physical traits relate to animals’ natural environments and survival strategies. This lesson is ideal for students to gain an understanding of animal adaptation and suitability to specific climates.
Learning Objectives:
Define and describe physical characteristics relevant to agricultural animals.
Identify and compare the physical features of Bos taurus indicus and Bos taurus taurus.
Relate these characteristics to environmental adaptation and feeding behavior.
Lesson Highlights:
Starter Activity: Students observe images of animal features and connect each feature to its specific function, like heat dissipation in Brahman cattle.
Comparative Analysis: Exploration of the traits of Bos taurus indicus (e.g., hump, loose skin) versus Bos taurus taurus (e.g., body shape, skin texture) and how these features aid in survival in different climates.
Discussion on Adaptations: Examination of physical adaptations, such as ear size and leg structure, and their role in helping animals thrive in challenging environments.
Extended Writing Task: Students write a comparison of Bos taurus indicus and Bos taurus taurus, analyzing how each breed’s traits are suited to its natural habitat.
Complete Answers and Timed Activities: All answers are provided to support discussions, and timers are included to maintain lesson flow.
Included Materials:
PowerPoint Presentation with comparative visuals of cattle breeds
Worksheet for noting and analyzing physical characteristics
Answer key for discussion points and activities
Reflection prompts to encourage student assessment of their understanding
This lesson package provides students with an understanding of how physical traits support the survival and productivity of agricultural animals, focusing on adaptation to climate and environment.
This lesson provides students with an introduction to animal husbandry, focusing on breeding practices and the significance of specific traits for agricultural success. Through discussions, examples, and selective breeding case studies, students learn how animals are bred for desirable characteristics and explore regional livestock breeds adapted to North Queensland’s conditions. This lesson is ideal for students to understand the fundamentals of animal rearing and the principles of selective breeding.
Learning Objectives:
Describe the practices and goals of animal husbandry.
Define the concept of a breed and understand its importance in agriculture.
Identify agricultural animals of regional significance and their adapted traits.
Explain how selective breeding is used to produce desired characteristics in animals.
Lesson Highlights:
Starter Activity: Students guess the lesson title and discuss products produced through animal husbandry, leading into a discussion on the purpose of rearing animals.
Concept of Breeds: Introduction to the definition of a breed, with examples of characteristics important to North Queensland, like heat tolerance and disease resistance.
Selective Breeding Case Study: Students learn about selective breeding through global and local examples, understanding the process of selecting traits over generations.
Regional Breeds Exploration: Students explore local livestock breeds adapted to North Queensland and the specific traits that support their productivity and resilience.
Complete Answers and Timed Activities: All answers are provided for facilitation, and timers are used to keep the lesson flowing smoothly.
Included Materials:
PowerPoint Presentation with examples of animal husbandry practices and selective breeding
Worksheet for breed characteristics and selective breeding processes
Answer key for all discussion points and activities
Reflection prompts to encourage student assessment of their learning
This comprehensive lesson package introduces students to the core concepts of animal husbandry, selective breeding, and the significance of regionally adapted livestock breeds, providing a solid foundation for further studies in agricultural science.
This interactive lesson explores the chemistry behind soil fertility, guiding students through the essential nutrients and testing methods that help farmers optimize crop growth. Using hands-on activities, visual aids, and a structured soil testing practical, students gain insight into how soil health affects agricultural productivity and the vital role of chemistry in sustainable farming.
Learning Objectives:
Understand the role of chemistry in determining soil health.
Describe the importance of essential nutrients: Nitrogen (N), Phosphorus §, and Potassium (K)in plant growth.
Analyze soil samples to assess nutrient levels and soil suitability for crops.
Apply knowledge in an exam-style question to reinforce understanding of soil fertility concepts.
Lesson Highlights:
Starter Activity: Students compare images of crops with varying health, hypothesizing about soil quality and nutrient differences.
Class Discussion: Introduction to essential nutrients (N, P, K) and their specific roles in supporting plant growth, including leaf and stem growth, root development, and disease resistance.
Soil Testing Practical: Students use probes to analyze soil samples, record results, and compare findings to ideal nutrient levels. Conclusion questions help them interpret and apply their observations.
Answer Key and Timed Activities: All answers are provided for easy facilitation, and timers are built into the lesson to keep students on track and engaged.
Whats included:
PowerPoint Presentation with visual aids and step-by-step instructions
Practical worksheet for soil testing and analysis
Literacy exercise
Complete answer key for all activities and discussion points
Reflection prompts to encourage students to assess their learning
This comprehensive lesson package is designed to engage students in understanding the chemical foundations of soil health and its impact on agriculture, providing a well-rounded look at sustainable farming practices.
This dynamic lesson introduces students to the interconnected roles of biology, chemistry, and economics in agricultural science. Through engaging discussions, hands-on activities, and real-world examples, students explore how these core disciplines work together to drive innovation and sustainability in agriculture. Perfect for helping students recognize agriculture as a multidisciplinary field, this lesson provides a holistic view of how science supports farming practices.
Learning Objectives:
Recognize the interdisciplinary nature of agricultural science.
Understand biology’s role in plant growth, animal health, and pest management.
Explore how chemistry aids soil fertility, pesticide formulation, and food preservation.
Discuss economic principles like supply and demand and their impact on farming decisions.
Lesson Highlights:
Starter Activity: A visual guessing game prompts students to identify biology, chemistry, and economics as the three pillars of agricultural science.
Video Case Study: Students watch a video on the Australian farming environment and identify examples of innovation in agriculture.
Interactive Poster Activity: Students visit information stations on each discipline, filling out worksheets to deepen their understanding.
**Timed Activities and Complete Answers Provided: **Built-in timers help pace each activity, keeping students engaged and on track, while all answers are provided within the slides for easy facilitation.
**Reflection & Review: **Students summarize their learning in short responses, reflecting on areas they found easy, challenging, or interesting.
Included Materials:
PowerPoint Presentation with visual aids and timers
Worksheet for video observation and station activities
Complete answer key for all activities
Review and reflection prompts
This lesson is ideal for creating a comprehensive and practical understanding of agricultural science, highlighting how interdisciplinary knowledge enhances sustainable farming practices.
Complete lesson on inheritance tailored towards the activate scheme. This lesson was used for year 8 but could be used for high ability year 7. All resources included. Animations and timers facilitate green pen 'correction' and keep pace.
This engaging and comprehensive lesson introduces Grade 10 students to the concept of farming systems, focusing on three main types: subsistence, commercial, and mixed farming. Set within the context of North Queensland agriculture, the lesson provides students with practical and relevant examples from their local environment, helping them to connect theory with real-world applications.
Learning Objectives:
Define the term farming systems and understand the interconnected processes within agricultural production.
Identify and describe the three key processes involved in farming systems: crop cultivation, livestock raising, and resource management.
Compare the features of subsistence, commercial, and mixed farming systems, highlighting their unique characteristics and sustainability practices.
Learning Activities:
Starter Discussion: Students explore local North Queensland businesses, identifying inputs, processes, and outputs to introduce the concept of farming systems.
Class Discussions and Presentations: Covering crop cultivation, livestock raising, and resource management, with interactive questions encouraging critical thinking on topics like cattle breeds suited to tropical environments and sustainable farming practices.
Knowledge Check and Review: A worksheet featuring true/false, multiple-choice, and short-answer questions that assess understanding of key concepts such as farming types and the importance of resource management in sustainability.
Group Challenge: A fun “Beat the Question Grid” activity reinforces learning through quickfire questions on farming systems, encouraging collaborative learning and knowledge consolidation.
**
Additional Features:**
Included Answers: All correct answers are provided within the slides, ensuring easy reference and smooth transitions between activities.
Timed Activities: Built-in timers are used throughout the lesson to maintain pace and keep students engaged, promoting focused and efficient learning.
This lesson is designed for ease of use, providing clear explanations and activities that align with the curriculum while fostering students’ critical thinking and understanding of agriculture.
A full differentiated lesson based on the new AQA (B6.4) SOW. The lesson covers the features of a 'good drug', preclinical trials, clinical trials, double blind trials, and publishing results. The concept of 'placebo' is discussed at several stages. Learning is applied/assessed at 4 stages, a match up activity, differentiated question grid, past paper question and plenary quiz. All the answers are included through animation and timers are used to promote pace. There is also an opportunity for class debate during the summary of answers at the differentiated question grid stage.
This lesson is based on the new AQA (B3.3) SOW and includes the required practical. Students first complete a table on proteins, carbohydrates and lipids as you work through the slides. There is then a review of this information through Q/A (answers incorporated into the slides). Students then move onto the practical, with stretch questions included for those who finish early. The plenary is based on students reflecting on their progress towards the learning objectives.
A complete lesson based on the OCR-A SOW but can be used for others. The lesson covers primary and secondary succession, climax communities and the prevention/deflection of climax communities. These sections are punctuated by past paper questions for students to apply their learning and for you to conduct AFL. Answers are included in the slides to allow for self/peer correction. The plenary is based on the students reflecting upon their progress against the learning objectives.