34Uploads
42k+Views
26k+Downloads
Physics
Controlling Current
The main presentation is a PowerPoint with animated sequences showing how a variable resistor controls current.
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 11 to 14 year old pupils but can also be used at a higher level as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 45 to 60 minute.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
How do Dimmer Switches Work?
Learning Outcomes
Knowledge
to state how a variable resistor can control the total resistance of a circuit
to state how the total resistance of a circuit affects the current flowing through the components
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
Polar Orbiting Satellites
The main presentation is a PowerPoint with animated sequences showing how a polar orbiting satellite produces an image of the Earth.
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 14 to 16 year old pupils but can also be used for younger pupils as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 45 to 60 minute lesson.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
How do Spy Satellites Work?
Learning Outcomes
Knowledge
to describe the motion of polar orbiting satellites relative to the rotation of the Earth and the Sun
to list the uses of polar orbiting satellites
Comprehension
to explain how polar orbiting satellites produce a two dimensional image of the three dimensional Earth
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
Change of State
The main presentation is a PowerPoint with animated sequences showing the processes involved in changing from a solid to a liquid to a gas
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 14 to 16 year old pupils but can also be used for younger pupils as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 45 to 60 minute lesson.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
What processes are involved when substances change state?
Learning Outcomes
Knowledge
to define the processes whereby substances change state
to recognise the connection between particle motion and state
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
SONAR
The main presentation is a PowerPoint with animated sequences showing how SONAR uses ultrasound to detect objects underwater.
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 14 to 16 year old pupils but can also be used at a higher level as a precursor to a more in-depth study of this topic.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
How can objects be detected underwater?
Learning Outcomes
Knowledge
to describe how echoes can be used to detect objects underwater
to name some applications of SONAR
Comprehension
to explain why ultrasound is used for SONAR
Analysis
to calculate distances based on echo delay times
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
Radioactive Decay
The main presentation is a PowerPoint with animated sequences showing the radioactive decay series of uranium 238.
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 14 to 16 year old pupils but can also be used at a higher level as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 45 to 60 minute lesson but could be spread over two lessons if needs be.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
Why does uranium turn into lead in 4.5 billion years?
Learning Outcomes
Knowledge
to recognise the effect that radioactive decay has on the atomic number and the mass number of a radioisotope
Analysis
to calculate the change in atomic number and mass number due to alpha and beta emissions
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
Nuclear Fission
The main presentation is a PowerPoint with animated sequences showing the conditions under which the nucleus of a large atom can be split by absorbing a neutron.
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 14 to 16 year old pupils but can also be used at a higher level as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 45 to 60 minute lesson but could be spread over two lessons if needs be.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
How is it possible to split the nucleus of an atom?
Learning Outcomes
Comprehension
to recognise the forces acting in the nucleus of an atom
to explain the processes involved in nuclear fission
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
Nuclear Chain Reactions
The main presentation is a PowerPoint with animated sequences showing how, with a sufficient amount of fissile radioisotopes a nuclear chain reaction can take place.
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 14 to 16 year old pupils but can also be used at a higher level as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 45 to 60 minute lesson but could be spread over two lessons if needs be.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
What is a nuclear chain reaction?
Learning Outcomes
Knowledge
to describe the different fissile properties of uranium-238 and uranium-235
to outline the conditions for a nuclear chain reaction
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
Ionization
The main presentation is a PowerPoint with animated sequences showing how how radiation can lead to the ionization of atoms.
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 14 to 16 year old pupils but can also be used at a higher level as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 45 to 60 minute lesson.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
How can radiation change the properties of an atom?
Learning Outcomes
Knowledge
to state the different types of ionizing radiation and their relative ionizing strengths
to state the dangers of ionizing radiation
Comprehension
to explain the process of physical ionization
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
Rutherford-Bohr Atomic Model
The main presentation is a PowerPoint with animated sequences showing the structure of the Rutherford-Bohr atomic model
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 14 to 16 year old pupils but can also be used at a higher level as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 60 minute lesson but could be spread over two lessons if needs be.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
How Does Atomic Number Dictate Position In The Periodic Table?
Learning Outcomes
Knowledge
to state the properties of sub-atomic particles
to define atomic number and mass number
Comprehension
to state the difference between group number and period number
Analysis
to calculate the number of neutrons from the mass number and atomic number
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
Gravitational Potential Energy
The main presentation is a PowerPoint with animated sequences using a roller coaster to show the transfer of gravitational potential energy to kinetic energy, and visa versa.
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 14 to 16 year old pupils but can also be used for more able younger pupils or at a higher level as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 45 to 60 minute lesson but could be spread over two lessons if needs be.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
How Do Roller Coasters Work?
Learning Outcomes
Analysis
to calculate gravitational potential energy (GPE).
to infer the gain in kinetic energy (KE) from the amount of GPE transferred.
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
Night and Day
The main presentation is a PowerPoint with animated sequences showing how the rotation of the Earth results in night and day.
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 11 to 14 year old pupils but can also be used with younger pupils as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 45 to 60 minute lesson.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
Why Do We Have Night And Day?
Learning Outcomes
Knowledge
to describe the Earth’s 24 hour cycle and how this results in day and night
to recognise the effect that the tilt of the Earth’s axis has on the northern and southern hemispheres
Analysis
to compare the relative times of day in different parts of the World.
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
States of Matter
The main presentation is a PowerPoint with animated sequences showing the differences between solids, liquids and gases.
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 14 to 16 year old pupils but can also be used for younger pupils as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 45 to 60 minute lesson.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
What Is The Difference Between Solids, Liquids and Gases?
Learning Outcomes
Knowledge
to describe the arrangement and motion of particles in solids, liquids and gases.
to state the properties of solids, liquids and gases.
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.
Wave Energy
A PPT (02+) with animated sequences demonstrating how the safety fuse requires a connection to earth in order for it melt during a fault. During animations a bar appears under the navigation buttons that wipes across until the animation has finished; it can be paused. For the buttons to work, the macro security level has to be set to medium. This is very easy and only needs to be done once; it will not compromise your computer. Select then then select. This is for ver. 2002; it might be different for later versions. COMMENTS WILL BE MUCH APPRECIATED
Ohm's Law and Resistance
The main presentation is a PowerPoint with animated sequences showing the relationship between voltage and current across a fixed resistance.
Support Material
Readme (instructions for whole lesson)
Learning Outcomes (PowerPoint)
Starter Activity (PowerPoint and Worksheet)
Main Activity (PowerPoint with worksheets and answer sheets)
Lesson Notes (hand-out)
Plenary Activity (PowerPoint and worksheet)
It is intended for all science teachers but particularly those who are not physics specialists. It is, primarily, aimed at 14 to 16 year old pupils but can also be used at a higher level as a precursor to a more in-depth study of this topic. Normally, the activities would fill a 45 to 60 minute lesson but could be spread over two lessons if needs be.
If you buy this resource, please print the Readme document as it contains the instructions and details of the files included.
Learning Outcomes
The learning outcomes are based on Bloom’s taxonomy of hierarchical classification: knowledge, comprehension, application, analysis, synthesis and evaluation. The lesson title and learning outcomes are:
What Is The Relationship Between Current, Voltage And Resistance?
Learning Outcomes
Knowledge
to identify the components needed to investigate Ohm’s Law and to draw the circuit diagram
to describe the effect that voltage has on current
to describe the effect that heat has on resistance of conductors and semi-conductors
Analysis
to use Ohm’s Law to calculate voltage, current and resistance
Differentiation
The activities have varying degrees of differentiation; please refer to the Readme document.